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Abstract

The Out-of-Distribution (OOD) problem in graph-
structured data is becoming increasingly important in
various areas of research and applications, including so-
cial network recommendation [36], protein function de-
tection[9, 21], etc. Furthermore, owing to the inher-
ent multi-label properties of nodes, multi-label OOD
detection remains more challenging than in multi-class
scenarios. A lack of uncertainty modeling in multi-
label classification methods prevents the separation of
OOD nodes from in-distribution (ID) nodes. Existing
uncertainty-based OOD detection methods on graphs
are not applicable for multi-label scenarios because they
are designed for multi-class settings. Therefore, node-
level OOD detection on multi-label graphs becomes
desirable but rarely touched. In this paper, we pro-
pose a novel Evidence-Based Out-of-Distribution De-
tection method on multi-label graphs. The evidence
for multiple labels, which indicates the amount of sup-
port to suggest that a sample should be classified into
a specific class, is predicted by Multi-Label Eviden-
tial Graph Neural Networks (ML-EGNNs). The joint
belief is designed for multi-label opinions fusion by
a comultiplication operator. Additionally, we intro-
duce a Kernel-based Node Positive Evidence Estima-
tion (KNPE) method to reduce errors in quantifying
positive evidence. Experimental results prove both the
effectiveness and efficiency of our model for multi-label
OOD detection on 7 multi-label benchmarks.
Keywords. Out-of-Distribution Detection, Multi-
Label Graphs, Evidence Theory

1 Introduction

Many real-world application scenarios can be repre-
sented by multi-label graphs, including social networks,
academic cooperation network, and protein-protein-
interaction networks[37, 2, 38]. In multi-label graphs,
nodes inherently own multiple labels and only part of
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Figure 1: In a Protein-Protein Interaction network,
nodes represent proteins, edges connect pairs of inter-
acting proteins, and labels indicate the various functions
of these proteins. The network consists of three types
of nodes: In-Distribution Labeled Proteins A, B, and C
for training; In-Distribution Unlabeled Proteins D and
E; and Out-of-Distribution Unlabeled Proteins F and
G. During the training process, Functions 3, 4, and 5
remain unseen by the model.

the nodes are labeled. Further, some unlabeled nodes
can be out-of-distribution (OOD) because their labels
didn’t appear in labeled nodes. As shown in Fig 1, in a
protein-protein-interaction (PPI) network, Function 3,
4, and 5 are unseen for Labeled Protein A, B and C. A
multi-class classification method classifies OOD Unla-
beled Protein F and G into one or more In-Distribution
Functions(like Function 1 and Function 2). The model’s
inability to detect unknown functions highlights the
need to investigate the out-of-distribution (OOD) de-
tection problem in multi-label graphs. A key challenge
is that current OOD detection methods often fail to inte-
grate information across multiple labels. By effectively
identifying these OOD instances, we can uncover un-
known protein functions, which is crucial for advancing
our understanding of the human body and developing
new medicines.

Recently, some semi-supervised learning methods
have been proposed for multi-label node classification
on graphs[31, 44, 2], with the purpose of predicting user
interests in social networks or identifying functions of
proteins in PPI networks. However, these methods can-
not distinguish OOD nodes from in-distribution (ID)
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nodes. Due to the lack of uncertainty modeling, they
will confidently tag an OOD node only with ID classes
from training data without giving useful estimates of
their predictive uncertainty[24]. By effectively distin-
guishing OOD nodes, we can identify users with poten-
tial interests for better recommendation. In addition,
drug discovery usually relies on limited labeled data,
whereas testing needs to be done on a wider variety
of candidates, including some OOD samples[21]. Thus,
multi-label out-of-distribution detection is becoming a
crucial and inevitable problem for graphs.

Some OOD detection methods[26, 13, 8] based on
uncertainty estimation[10, 19, 23] are only available for
multi-class graphs. In multi-class setting, each sam-
ple only has one label. While, in multi-label setting,
each sample may have more than one label. There are
some OOD detection methods[20, 16] may be suitable
for multi-label OOD settings. However, they may not be
effective when dealing with graph data. Besides, there
are some evidence-based methods[43, 32] proposed for
OOD detection on multi-class graphs with a Dirichlet
distribution as conjugate prior[28]. Such methods are
not applicable for multi-label graphs. That is because
classification probabilities in multi-label setting follow
binomial distributions, not a categorical distribution,
whose prior is the Beta distribution but not the Dirich-
let distribution. Moreover, evaluating metrics includ-
ing Shannon entropy, the negative log likelihood (NLL),
vacuity (derived from a lack of evidence) and dissonance
(derived from conflicting evidence)[11, 15], which are de-
signed for multi-class uncertainty quantification hence
not applicable on multi-label graphs. Under multi-label
settings, those metrics may incorrectly regard some ID
nodes as OOD samples. For instance, in Fig 1, both
Protein D and Protein E have ID unlabeled functions.
However, Protein D does not own Function 2 like Pro-
tein E. Thus, vacuity designates Protein D as an OOD
protein characterized by insufficient information, while
dissonance identifies Protein E as an OOD protein ex-
hibiting conflicting evidence.

To address aforementioned problems, we propose a
novel evidence based OOD detection method on multi-
label graphs. Based on Subjective Logic[16], Evidence
is the amount of support collected from data to suggest
that a sample should (or should not) be classified into
a specific class. Under multi-label setting, for each ID
class, we define positive evidence as a measure of the
confidence to classify a sample into this class. While
negative evidence is used to quantify the objections.

Specifically, we introduce Multi-Label Evidential
Graph Neural Networks (ML-EGNNs), from which the
positive and negative evidence are used to estimate
the predictive uncertainty. Under the Beta prior, ML-

EGNNs have a specific loss function, Beta loss, which
is minimized subject to network parameters using back-
prop. To address the combination of evidence from mul-
tiple classes, we term joint belief for multi-label samples
based on the comultiplication of binomial opinions[16].
Besides, a Kernel-based Node Positive Evidence Estima-
tion (KNPE) method is provided, using structural infor-
mation and collecting prior positive evidence from train-
ing nodes, to help detect multi-label out-of-distribution
nodes. Moreover, to maintain a reliable performance on
ID classification, the separate belief of different classes
is treated as a basis for class probabilities, which is both
effective and efficiency. In summary, the contribution of
this paper is three-fold:

• We propose a novel problem of out-of-distribution
(OOD) detection on the multi-label graph and de-
velop a novel evidential method for node-level OOD
detection. To the best of our knowledge, this is the
first study to detect OOD nodes with multiple labels
on graphs.

• We introduce Multi-Label Evidential Graph Neural
Networks (ML-EGNNs) with Beta loss to predict un-
certainty for multiple classes. Besides, we define joint
belief for multi-label opinions fusion. Additionally,
we develop a Kernel-based Node Positive Evidence
Estimation (KNPE) method to reduce errors in quan-
tifying positive evidence.

• Experimental results show both the effectiveness and
efficiency of our model on multi-label OOD detection.

2 Preliminaries

2.1 Subjective Logic (SL). Subjective logic (SL)
is a probabilistic logic that incorporates epistemic un-
certainty and source trust [16]. Epistemic uncertainty
assesses whether input data falls within the observed
distribution [17]. In a multi-class setting, a multino-
mial opinion of a random variable y is represented as
ω = (b, u,a) with domain C = {1, . . . ,K} [14, 43],
where b represents belief mass distribution, u indi-
cates uncertainty due to lack of evidence, and a de-
notes the base rate distribution. The term evidence
reflects how much data supports a specific classifica-
tion [43]. For a K-class setting, the probability mass
p = [p1, p2, . . . , pK ] is assumed to follow a Dirichlet
distribution characterized by a K-dimensional Dirich-
let strength vector α = {α1, . . . , αK}. However, this
approach does not apply to multi-label settings, where
classifications adhere to multiple binomial distributions.
To address this, we introduce the Beta distribution, the
conjugate prior of the binomial distribution, which can
provide binary evidence for each class:
(2.1)

Beta(p | α, β) =
{ 1

B(α,β)
pα−1(1− p)β−1, for p ∈ [0, 1]

0, otherwise
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Figure 2: Overall framework of our proposed method ML-EGNNs for training and inference.

where the probability mass p ∈ [0, 1] is assumed to fol-
low a Beta distribution parameterised by a 2 dimen-
sional strength vector [α, β]. B(α, β) is a 2 dimensional
Beta function. Each binomial classification ω holds a
binomial opinion:

(2.2) ω = (b, d, u, a)

with domain C = {0, 1}, where b indicates belief mass
distribution, d indicates disbelief mass distribution, u
indicates uncertainty with a lack of evidence, and a
indicates base rate distribution. Let e = {epos, eneg} be
the evidence for one binomial classification, where the
positive evidence epos ≥ 0 and the negative evidence
eneg ≥ 0. The Beta strength [α, β] are linked by the
following α = epos + aW and β = eneg + aW , where
W is the weight of uncertain evidence. With loss of
generality, the weight W is set to 2 and considering the
assumption of the subjective opinion that a = 1/2, we
have the Beta strength α = epos + 1, β = eneg + 1.
The total strength of the Beta is defined as S = α+ β.
Then the Beta evidence can be mapped to the subjective
opinion by setting the following equality’s:

(2.3) b =
α− 1

α+ β
, d =

β − 1

α+ β
, u =

2

S
=

2

α+ β
.

2.2 Graph Neural Networks (GNNs). Graph
neural networks (GNNs) provide a feasible way to ex-
tend deep learning methods into the non-Euclidean do-
main including graphs and manifolds[40]. For each
node, GNN aims to learn an embedding containing in-
formation about its neighborhood and itself. The em-
bedding hi is a vectors of node i[45]:

(2.4)
hi = f(xi, hnei[v], xnei[v]),

oi = g(hi, xi),

where f represents the local transition function, hnei[v]
and xnei[v] are the embeddings and the features of
neighbors of node i. Notable models of aggregators
include GCN[7, 18], GAT[34], and GraphSAGE[12]. An
end-to-end framework can be established by stacking
graph convolutional layers, fully connected layers, and
an activation function.

3 Methodology

3.1 Notations and Problem Formulation. Given
a multi-label graph G = (V,E,A,X,YL) consisting of a
set of nodes V = {1, ..., N} and a set of edges E ⊂ V×V,
where the connections in G can be represented by the
adjacency matrix A ∈ {0, 1}N×N . X = [xT

1 ,x
T
2 , ...,x

T
N ]

is the node feature matrix. YL = {yi|i ∈ L} are the

labels of the training nodes L ⊂ V. yi = [0, 1]
K

is
the class label of node i, where K is the number of
in-distribution classes. Following the semi-supervised
learning pattern, among all the nodes, L are labeled
nodes while the remaining U = V\L are unlabeled.
U = UID + UOOD, where UID denotes unlabeled ID
nodes and UOOD denotes unlabeled OOD nodes. Here
we only consider UOOD as nodes which do not have any
labels in K known classes. We aim to predict: (1)

class probabilities of U: pU = {pi ∈ [0, 1]
K |i ∈ U}

for classifications; (2) belief estimates: the joint belief
of U, bU = {bi ∈ [0, 1]|i ∈ U}, where bi indicates the
confidence in dividing node i into known classes.

3.2 Multi-Label Evidential Graph Neural Net-
works (ML-EGNNs). Further, a multi-label classifi-
cation opinion Ω can be formulated as a combination of
K binomial classification opinions {ω1, ..., ωk, ..., ωK}
[3]. Each binomial classification ωk holds a binomial
opinion ωk = (bk, dk, uk, ak) with domain Ck = {0, 1},
bk indicates positive belief mass distribution, dk indi-
cates negative belief mass distribution, uk indicates un-
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certainty with a lack of evidence, and ak indicates base
rate distribution.
Multi-Label Evidence Estimation. Compared with
classical neural networks, Evidential Neural Networks
(ENNs)[28, 14] do not have a softmax layer, but use
an activation layer (e.g., ReLU) to make sure that the
output is non-negative. To be specific, as shown in
Fig 2, Multi-Label Evidential Graph Neural Networks
(ML-EGNNs) are built by stacking graph convolutional
layers and two fully connected layers (FCs) and ReLU
layers, which are taken as the positive and negative
evidence vectors for Beta distribution respectively.

Given sample i, let fpos(X,A|θ) and fneg(X,A|θ)
represent the positive and negative evidence vectors pre-
dicted by ML-EGNNs, where X is the input node fea-
ture matrix, A is the adjacency matrix, and θ represents
the network parameters. Then, the two parameters
αi = [αi1, ..., αik, ..., αiK ] and βi = [βi1, ..., βik, ..., βiK ]
of Beta distribution for node i:

(3.5)
αi = fpos(X,A|θ) + 1,

βi = fneg(X,A|θ) + 1.

where k indicates the k-th class of total K classes. For
the classification task, the class probabilities are the
softmax outputs of fpos(X,A|θ).
Training Loss. With N training samples and K
different classes, a multi-label evidential neural network
is trained by minimizing the Beta loss:
(3.6)

LBeta =

N∑
i=1

K∑
k=1

∫
[BCE (yik, pik)]B (αik, βik) dpik

=

N∑
i=1

K∑
k=1

∫
[−yik log (pik)− (1− yik) log (1− pik)]B (αik, βik) dpik

=

N∑
i=1

K∑
k=1

[−yikE [log (pik)]− (1− yik)E [log (1− pik)]] ,

where B(αik, βik) is a 2 dimensional Beta function.
BCE(·) denotes the Binary Cross Entropy Loss. pik
represents the predicted probability of sample i belong-
ing to class k by model. yik represents the ground truth
for sample i with label k, i.e., yik = 1 means the train-
ing node i belongs to class k, otherwise yik = 0. We use
E[·] to represent Epik∼Beta[·]. To be specific,

(3.7) Epik∼Beta [log (pik)] = ψ(αik)− ψ(αik + βik),

(3.8) Epik∼Beta [log (1− pik)] = ψ(βik)− ψ(αik + βik),

where we use Γ(·) represents the Gamma function.
Thus, the Beta loss term LBeta is:

(3.9)
LBeta =

N∑
j=1

K∑
i=1

[yij (ψ (αij + βij)− ψ (αij))

+ (1− yij) (ψ (αij + βij)− ψ (βij))] ,

where ψ(·) denotes the Digamma function. Besides, as
the belief and disbelief of label k for sample i, we have:

(3.10) bik =
αik − 1

αik + βik
, dik =

βik − 1

αik + βik
.

So far, for in-distribution multi-label classification,
we set the positive belief as the probability of class
i for sample j, i.e., αik−1

αik+βik
, without additional time

consuming.
Importance of Multi-Label Positive Evidence.
Here, we discuss the connections and differences be-
tween multi-class and multi-label OOD detection. In
the multi-class OOD scenario, there is some evidence for
each class, leading to vacuity uncertainty as defined by
Eq 2.3. In contrast, for multi-label OOD detection, we
predict the Beta distribution for each class, where the
ideal Beta distribution for an OOD example—belonging
to no ID class—will have zero positive evidence and
large negative evidence. This results in small vacuity
uncertainty, making it challenging to distinguish be-
tween ID and OOD samples. Additionally, most ID
nodes belong to only a few classes, causing significant
negative evidence in other classes. This complicates
differentiation based on negative evidence. Unlike ID
nodes, OOD nodes have zero positive evidence, which
may aid in detecting multi-label OOD samples. Given
the importance of positive evidence in multi-label OOD
detection, we propose KNPE and multi-label opinion
fusion techniques in the following sections to enhance
positive evidence estimation during both training and
inference.

3.3 Kernel-based Node Positive Evidence Esti-
mation (KNPE). The idea of the KNPE is to estimate
prior Beta distribution parameter for each node based
on the labels of other training nodes and node-level dis-
tance. To be specific, we focus on the estimation the
prior information of multi-label evidence. For each pair
of training nodes i and j, calculate the node-level dis-
tance dij , i.e., the shortest path between nodes i and j.
Then the Gaussian kernel function is used to estimate
the positive distribution effect between nodes i and j:

(3.11) g (dij) =
1

σ
√
2π

exp

(
−
d2ij
2σ2

)
,

where σ is the bandwidth parameter. The contribution
of positive evidence estimation for node i from labeled
node j is hij(yi, dij) = [h1ij , h

2
ij , ..., h

k
ij , ..., h

K
ij ]. And h

k
ij

is obtained by:

(3.12) hk
ij =

{
0 yjk = 0,

g (dij) yjk = 1,

where yj = [yj1, ..., yjk, ..., yjK ] = [0, 1]
K

represents
the ID labels of training node j. The prior positive
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Table 1: Details of 7 benchmark multi-label graph-structured datasets.

Dataset Domain Node Edge Label |V| |E| |Y| |X| |Yid| |Yood| |Nid| |Nood|
DBLP Citation Author Co-authorship Research areas 28,702 68,335 4 300 3 1 21, 553 4,539
Facebook Social User Contacts Groups 792 14,024 17 319 14 3 524 243
BlogCatalog Social User Contacts Topic Categories 10,312 333,983 39 128 25 14 8,513 1,037
Flickr Social User Contacts Interest Groups 80,513 5,899,882 195 128 150 45 57,185 14,775
PPI Biology Protein Interaction Funtions 56,944 409,358 121 50 100 21 1,748 33
Movielens Movie Movie Co-director Genres 7,805 55,832 20 5,000 11 9 4,338 998
Yeast Biology Gene Interaction Funtions 681 910 13 200 5 8 138 13

Table 2: The performance for multi-label OOD detection in terms of AUC (mean ± std).

Backbone Method
AUC

DBLP Facebook BlogCatalog Flickr PPI Movielens Yeast

GCN

Backbone 0.518 ± 0.006 0.523 ± 0.012 0.423 ± 0.013 0.450 ± 0.006 0.491 ± 0.023 0.537 ± 0.003 0.698 ± 0.021
Dropout 0.634 ± 0.002 0.503 ± 0.009 0.536 ± 0.010 0.500 ± 0.007 0.608 ± 0.035 0.484 ± 0.001 0.530 ± 0.018
Ensemble 0.643 ± 0.002 0.507 ± 0.006 0.504 ± 0.004 0.500 ± 0.007 0.569 ± 0.001 0.489 ± 0.003 0.583 ± 0.033
Mahalanobis 0.508 ± 0.009 0.603 ± 0.081 0.501 ± 0.005 0.522 ± 0.015 0.518 ± 0.050 0.520 ± 0.003 0.501 ± 0.069
JointEnergy 0.645 ± 0.005 0.613 ± 0.023 0.527 ± 0.016 0.504 ± 0.009 0.530 ± 0.034 0.490± 0.008 0.524 ± 0.053
Ours 0.655 ± 0.004 0.846 ± 0.048 0.612 ± 0.021 0.552 ± 0.010 0.668 ± 0.052 0.556 ± 0.007 0.746 ± 0.021

GAT

Backbone 0.422 ± 0.002 0.425 ± 0.003 0.464 ± 0.001 0.497 ± 0.004 0.522 ± 0.087 0.469 ± 0.001 0.646 ± 0.016
Dropout 0.759 ± 0.001 0.913 ± 0.021 0.612 ± 0.027 0.484 ± 0.008 0.571 ± 0.111 0.552 ± 0.002 0.542 ± 0.061
Ensemble 0.757 ± 0.003 0.920 ± 0.008 0.577 ± 0.002 0.486 ± 0.003 0.591 ± 0.006 0.562 ± 0.004 0.588 ± 0.073
Mahalanobis 0.537 ± 0.026 0.661 ± 0.081 0.541 ± 0.010 0.502 ± 0.004 0.517 ± 0.038 0.519 ± 0.018 0.542 ± 0.050
JointEnergy 0.758 ± 0.003 0.908 ± 0.016 0.568 ± 0.027 0.500 ± 0.007 0.512 ± 0.013 0.545 ± 0.010 0.557 ± 0.036
Ours 0.811 ± 0.008 0.922 ± 0.028 0.565 ± 0.028 0.512 ± 0.002 0.598 ± 0.002 0.628 ± 0.014 0.763 ± 0.005

GraphSAGE

Backbone 0.489 ± 0.006 0.326 ± 0.041 0.501 ± 0.001 0.500 ± 0.006 0.457 ± 0.001 0.430 ± 0.001 0.641 ± 0.023
Dropout 0.768 ± 0.001 0.957 ± 0.007 0.698 ± 0.001 0.492 ± 0.008 0.806 ± 0.018 0.609 ± 0.003 0.637 ± 0.065
Ensemble 0.762 ± 00013 0.956 ± 0.005 0.697 ± 0.006 0.492 ± 0.005 0.808 ± 0.034 0.604 ± 0.003 0.612 ± 0.020
Mahalanobis 0.400 ± 0.016 0.612 ± 0.091 0.410 ± 0.004 0.502 ± 0.003 0.523 ± 0.044 0.452 ± 0.023 0.551± 0.018
JointEnergy 0.765 ± 0.002 0.901 ± 0.026 0.700 ± 0.003 0.499 ± 0.003 0.721 ± 0.013 0.592 ± 0.011 0.513 ± 0.046
Ours 0.796 ± 0.001 0.937 ± 0.028 0.615 ± 0.021 0.528 ± 0.008 0.762 ± 0.006 0.623 ± 0.004 0.741 ± 0.003

-
MLGW 0.566 ± 0.004 0.497 ± 0.031 0.502 ± 0.002 0.495 ± 0.010 0.617 ± 0.010 0.532 ± 0.004 0.538 ± 0.042
LANC 0.494 ± 0.049 0.681 ± 0.008 0.478 ± 0.009 0.507 ± 0.009 0.449 ± 0.056 0.481 ± 0.002 0.568 ± 0.014
MLGD 0.512 ± 0.003 0.689 ± 0.007 0.508 ± 0.024 0.511 ± 0.011 0.627 ± 0.005 0.517 ± 0.008 0.615 ± 0.014

parameter is estimated as:

(3.13) α̂i =
∑
j∈L

hij(yj , dij) + 1,

where L is the set of labeled nodes. Since the multi-
label positive evidence is more importance in multi-
label OOD detection, we only estimate the prior positive
evidence in this section. During the training process,
we minimize LPE =

∑N
i=1 α̂i log

α̂i

αi
. The total loss

function we use to optimize the model is:

(3.14) Ltotal = LBeta + λ · LPE ,

where λ denotes a trade-off parameter with LPE .

3.4 Multi-Label Opinions Fusion. After obtaining
separate beliefs of multiple labels, we need to combine
these opinions and quantify a integrate opinion, i.e.,
Opinions Fusion. Note that, if a sample belongs to
any label we already know, then it is an ID sample.
Only samples that do not belong to any known cate-
gory should be classified as OOD samples. Hence, naive
operations like summing up all the beliefs are inappli-
cable for multi-label setting.
Multi-Label Joint Belief. Inspired by the multi-
plication in Subjective Logic[16], a multi-label opinion
Ω = ω1 ∨ ω2 ∨ · · · ∨ ωK . Based on that, the multi-label
joint belief over all classes is defined as:

(3.15) b = b1 ∨ b2 ∨ · · · ∨ bK .

Let Cm = {0, 1} and Cn = {0, 1} be two different
class domain. ωm = (bm, dm, um, am) and ωn =
(bn, dn, un, an) are binomial opinions on Cm and Cn. The
joint opinion ωm∨n = ωm ∨ ωn can be formulated as:
(3.16)

bm∨n = bm + bn − bmbn,

dm∨n = dmdn +
am (1− an) dmun + (1− am) anumdn

am + an − aman
,

um∨n = umun +
andmun + amumdn
am + an − aman

,

am∨n = am + an − aman,

where the joint belief b can be calculated by Eq 3.16
iteratively. As shown in Fig 2 (Inference), only samples
which do not belong to any known classes will have a
relative low joint belief, which can effectively differen-
tiate them from in-distribution sample. Thus, we use
the joint belief to distinguish whether a sample is out-
of-distribution. With a higher joint belief, we shall be
more confident to consider a sample as in-distribution
sample. For example, in Fig 2, our model assigns high
joint belief for n2 and n3 with 0.96 and 0.83 respectively.
n2 and n3 have similar higher joint belief as n1 because
all of them have at least one ID label. On the other
hand, nodes like n6 which do not have any ID labels
will be assigned a low joint belief, i.e., 0.27.
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Table 3: The performance for multi-label OOD detection in terms of AUPR (mean ± std).

Backbone Method
AUPR

DBLP Facebook BlogCatalog Flickr PPI Movielens Yeast

GCN

Backbone 0.553 ± 0.009 0.519 ± 0.016 0.454 ± 0.008 0.500 ± 0.007 0.589 ± 0.011 0.546 ± 0.003 0.690 ± 0.027
Dropout 0.609 ± 0.001 0.475 ± 0.005 0.519 ± 0.010 0.501 ± 0.013 0.567 ± 0.026 0.485± ± 0.001 0.602 ± 0.027
Ensemble 0.614 ± 0.001 0.560 ± 0.025 0.505 ± 0.004 0.512 ± 0.005 0.534 ± 0.008 0.488 ± 0.002 0.604 ± 0.086
Mahalanobis 0.524 ± 0.003 0.575 ± 0.093 0.499 ± 0.003 0.508 ± 0.009 0.560 ± 0.057 0.520 ± 0.003 0.576 ± 0.073
JointEnergy 0.659 ± 0.004 0.547 ± 0.011 0.541 ± 0.023 0.492 ± 0.006 0.570 ± 0.036 0.483 ± 0.006 0.564 ± 0.045
Ours 0.681 ± 0.003 0.875 ± 0.071 0.657 ± 0.015 0.565 ± 0.005 0.703 ± 0.062 0.547 ± 0.003 0.781 ± 0.027

GAT

Backbone 0.535 ± 0.001 0.315 ± 0.002 0.534 ± 0.001 0.488 ± 0.007 0.591 ± 0.056 0.505 ± 0.001 0.739 ± 0.005
Dropout 0.734 ± 0.003 0.909 ± 0.026 0.563 ± 0.027 0.497 ± 0.010 0.584 ± 0.058 0.536 ± 0.002 0.524 ± 0.043
Ensemble 0.734 ± 0.001 0.937 ± 0005 0.539 ± 0.001 0.500 ± 0.008 0.585 ± 0.011 0.543 ± 0.004 0.597 ± 0.072
Mahalanobis 0.537 ± 0.029 0.661 ± 0.081 0.553 ± 0.019 0.501 ± 0.004 0.568 ± 0.034 0.533 ± 0.009 0.556 ± 0.030
JointEnergy 0.779 ± 0.003 0.894 ± 0.025 0.611 ± 0.017 0.477 ± 0.003 0.634 ± 0.011 0.530 ± 0.011 0.531 ± 0.065
Ours 0.813 ± 0.002 0.936 ± 0.029 0.613 ± 0.029 0.510 ± 0.003 0.664 ± 0.001 0.638 ± 0.010 0.789 ± 0.002

GraphSAGE

Backbone 0.523 ± 0.005 0.421 ± 0.028 0.386 ± 0.001 0.504 ± 0.011 0.461 ± 0.002 0.480 ± 0.001 0.710 ± 0.012
Dropout 0.748 ± 0.002 0.940 ± 0.017 0.663 ± 0.003 0.483 ± 0.028 0.790 ± 0.015 0.590 ± 0.005 0.560 ± 0.044
Ensemble 0.739 ± 0.001 0.951 ± 0.004 0.662 ± 0.002 0.484 ± 0.009 0.785 ± 0.035 0.585 ± 0.003 0.601 ± 0.001
Mahalanobis 0.437 ± 0.007 0.615 ± 0.053 0.445 ± 0.005 0.503 ± 0.003 0.576 ± 0.052 0.478 ± 0.012 0.520 ± 0.028
JointEnergy 0.776 ± 0.001 0.912 ± 0.028 0.723 ± 0.005 0.529 ± 0.001 0.756 ± 0.017 0.592 ± 0.012 0.522 ± 0.048
Ours 0.796 ± 0.001 0.942 ± 0.026 0.647 ± 0.018 0.536 ± 0.013 0.803 ± 0.005 0.634 ± 0.007 0.784 ± 0.005

-
MLGW 0.511 ± 0.010 0.499 ± 0.009 0.505 ± 0.003 0.498 ± 0.005 0.610 ± 0.042 0.522 ± 0.011 0.581 ± 0.067
LANC 0.518 ± 0.026 0.651 ± 0.002 0.478 ± 0.002 0.499 ± 0.012 0.481 ± 0.016 0.505 ± 0.002 0.623 ± 0.050
MLGD 0.524 ± 0.003 0.624 ± 0.001 0.502 ± 0.004 0.500 ± 0.010 0.603 ± 0.007 0.516 ± 0.003 0.690 ± 0.018

4 Experiments

4.1 Datasets. The data used to validate our model
are required to be graph-structured and multi-labeled.
We collect 7 benchmark datasets to perform our ex-
periments including DBLP1[2], Facebook2[44], Blog-
Catalog3[4], Flickr3[33], PPI3[41], Movielens4[44], and
Yeast5[6]. The major details of the datasets are listed
in Table 1. |V|, |E| and |Y| represent the number of
nodes, the number of edges, and the number of labels,
respectively. |X| denote the dimensions of node fea-
tures. |Yid| and |Yood| denote the number of ID classes
and OOD classes, respectively. |Nid| and |Nood| denote
the number of ID nodes and OOD nodes, respectively.

4.2 Experimental Setting and Baselines. Differ-
ent from multi-class, for the multi-label, an input is con-
sidered an OOD only if it does not contain any ID la-
bels[35]. For OOD sample, its label set should have
no intersection with the training label set and therefore
should not be predicted by the model. For multi-label
OOD detection, specific to different datasets, we select
some classes as OOD classes and trained the models
based on training nodes which only own labels of the
other classes, i.e., ID classes. The numbers of ID nodes
and OOD nodes are listed in Table 1: |Nid| and |Nood|.
For testing nodes, we randomly select the same number
of ID testing nodes as OOD nodes from the whole ID
nodes-set. For example, for DBLP, OOD testing nodes
number (unlabeled) is 4, 539, ID testing nodes number
(unlabeled) is 4, 539, and ID training nodes number (la-
beled) is 21, 533− 4, 539 = 16, 994. We do not need any
labeled OOD data for model training. To summarize,

1https://github.com/Uchman21/MLGW/tree/master/DBLP
2http://snap.stanford.edu/data/ego-Facebook.html
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/multilabel.html

there are 3 kinds of nodes: ID training nodes, ID
testing nodes and OOD testing nodes.

The effectiveness of our method is validated us-
ing 3 GNN models as backbone: GCN[18], GAT[34]
and GraphSAGE[12]. We compare our method with
three state-of-the-art multi-label classification meth-
ods, MLGW[2], LANC[44] and MLGD[31]. Two
traditional OOD detection methods, MC-Dropout
(Dropout)[10][27] and Deep Ensembles (Ensemble)[19],
which can be applied on graphs are compared with our
method. One feature-based method Mahalanobis[20]
and one output-based method JointEnergy[35], both
can be derived post hoc from a trained model.

4.3 Multi-Label OOD Detection. For multi-label
OOD detection, TABLE 2 and TABLE 3 show the per-
formance of each comparing method (mean ± std) in
terms of AUC and AUPR, respectively. For each back-
bone, the top-1 model is bolded. The results show
that our method improve the performance of multi-label
OOD detection over all 3 backbones. To be specific, for
multi-label OOD detection AUC, our method improves
10.8% over backbone GCN, 17.9% over GAT, and 16.6%
over GraphSAGE on the average of 7 benchmarks. That
is because all the backbones are optimized by BCE loss
with softmax layers forehead. Without the constraint of
Beta prior and ReLU layers to output evidence, it is dif-
ficult to distinguish OOD nodes effectively only accord-
ing to the prediction probability. For the multi-label
classification methods, MLGW, LANC and MLGD, our
method also outperforms them on OOD detection for all
7 datasets with an average of 14.7% increase. Although
those multi-label classification methods have considered
the existence of multiple labels and the association char-

4https://grouplens.org/datasets/hetrec-2011/
5http://pages.cs.wisc.edu/~dpage/kddcup2001/
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Figure 3: Ablation Study for joint belief on multi-label
OOD detection (AUC).
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Figure 4: Ablation Study for KNPE on multi-label
OOD detection (AUC).

acteristics of different labels. They are not designed
for OOD setting with a lack of evaluating uncertainty.
Therefore, the performance of these classification meth-
ods in multi-lable OOD detection is basically the same
as that of backbones.

Moreover, compared to Dropout and Ensemble, our
method has better and more stable performance, though
it is slightly inferior on Facebook and BlogCatalog
with GAT and GraphSAGE as backbones. We think
this is acceptable due to the characteristics of different
datasets and the stable performance of our method on
the whole. Dropout and Ensemble are widely used
for OOD detection. Nevertheless, these methods can
be applied on graphs. They still have the defects
of being unable to model multi-label problems. Our
method outperforms Mahalanobis method on all the
benchmarks. JointEnergy, which is designed for multi-
label setting, performs well on some of the datasets
like DBLP. Generally, our method works better on
multiple datasets and different backbones which proves
the effectiveness and the generalization ability of our
model on different benchmarks.

4.4 Ablation Study. We conduct additional experi-
ments to demonstrate the contributions of our two key
technical components, joint belief and KNPE.
Joint Belief. To evaluate the effectiveness of joint
belief, we perform a ablation study on multi-label OOD
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Figure 5: Runtime comparison between different meth-
ods. For backbones, 1 represents GCN, 2 represents
GAT and 3 represents GraphSAGE.

detection. To be specific, we replace the joint belief

with a simple averaging belief
∑K

k=1 bik
K for each testing

node i. As shown in Fig 3, we compare joint belief with
average belief for the performance on backbone GCN
and GAT in terms of AUC. The standard deviation of
the results are indicated by the vertical lines on the
column charts. Generally, compared to Average Belief,
the applying of joint belief improve the performance of
models over different backbones. It confirms the validity
of joint belief to combine multiple belief and form the
final fusion opinion.
KNPE. To further measure the effect of KNPE, we
conduct experiments both with and without KNPE on
multi-label OOD detection. For those without KNPE,
we only use Beta loss to update our model and joint
belief to predict OOD nodes. We compare our full
method against a version without KNPE under AUC
and AUPR on different benchmarks. As shown in Fig 4,
the KNPE component enhance OOD detection over
different backbones.

4.5 Efficiency Analysis. In addition, we compare
the average runtime of our method and MLGW, LANC,
MLGD, and Ensemble (for 3 backbones) to verify the
efficiency of our method. As shown in Fig 5, MLGW is
more time-consuming than others due to the process
of graph walks conducted by multiple label-specific
agents. Our method is faster than LANC and MLGD
because the accession of ML-EGNNs do not significantly
increase the number of model parameters compared
to backbones. In addition, our method is faster than
Ensemble and takes half or less time. This is common
sense because the ensemble method inherently requires
more training times.

4.6 Visualization. In Fig 6, we present the t-SNE
visualization of embeddings from Facebook obtained us-
ing GraphSAGE. The ID nodes cluster on the left, while
the OOD nodes are on the right. In Fig 6 (a), we use
the average probabilities of multiple classes as belief val-
ues, resulting in high, uniform belief across almost all
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(a) Probability (b) Average Belief (c) Joint Belief

Figure 6: Graph embedding representations of the Facebook dataset with different quantitative methods on
multi-label OOD detection experiment using GraphSAGE. The color of nodes denotes the belief value predicted
by model. Red means higher belief to distinguish a node to be in-distribution while blue represents the opposite.
(a) Backbone optimized by BCE loss; (b) ML-EGNNs with average belief; (c) ML-EGNNS with joint belief.

nodes. Fig 6 (b) employs average belief
∑K

k=1 bik
K , with

the OOD cluster shown in blue, performing better due
to ML-EGNNs optimized by Beta loss. However, some
ID nodes still receive low belief levels incorrectly. In
Fig 6 (c), using joint belief effectively distinguishes ID
from OOD nodes, with distinct red and blue colors in-
dicating valid OOD detection results. Overall, our ML-
EGNNs with joint belief achieve the best visualization
among the three schemes.

5 Related Work

5.1 Multi-Label Classification on Graphs. Due
to the non-Euclidean datatype of graphs[31], multi-
label classification on graphs is more challenging than
Euclidean data like images[5, 22]. MLGW[2] is the first
work focusing on the multi-label node classification task,
in the form of simultaneous graph walks. MINE[29] and
ML-GCN[30] model node-node network and label-label
network to enhance the node representation learning.
LANC[44] is a label attentive neighborhood convolution
model which leverages structure, attribute and label
information simultaneously. MLGD[31] generates both
the node embedding and the label embedding together
via a deep probabilistic model to capture higher-order
multi-label correlations. Besides, MLGNC[42] proposes
a synthetic multi-label graph generator with tunable
properties for multi-label node classification benchmark.
Despite this, these methods fail to distinguish OOD
samples from ID samples, as they lack uncertainty
modeling and confidently classify OOD nodes into ID
classes based solely on training data.

5.2 Out-of-Distribution Detection on Graphs.
Despite discussions on multi-label OOD detection in
images, as highlighted in JointEnergy[1], there are lim-
ited studies on OOD detection in graphs. This topic
is closely related to the estimation of uncertainty in

semi-supervised node classification[1, 32]. One way
is to introduce Bayesian-based (Dropout)[10] methods
or Ensemble methods[19] on graphs, then apply en-
tropy[17] or NLL to measure the uncertainty of sam-
ples and detect OOD samples[26, 13, 8, 25]. Another
line of research in prediction uncertainty modeling is to
employ prior distributions on model parameters based
on Subjective Logic and Belief Theory. S-BGCN-T-
K[43] parameterized a Dirichlet conjugate prior comb-
ing with Graph-Based Kernel and Teacher Network.
GPN[32] performs a Bayesian update over the class
predictions based on density estimation and diffusion.
GNNSAFE[39] utilizes energy-based belief propagation
and introduces an auxiliary regularization term serving
as outlier exposure. These methods are not suitable
for multi-label graphs, where classification probabilities
follow multiple binomial distributions rather than a cat-
egorical distribution.

6 Conclusion

In this work, we first propose and formulate the multi-
label OOD detection problem on graphs. To address
this problem, we introduce a novel evidential method,
Multi-Label Evidential Graph Neural Networks (ML-
EGNNs), to predict uncertainty for multiple classes.
Our interpretation of joint belief combining multiple
classes incorporates the idea of multiplication in Subjec-
tive Logic. Besides, a Kernel-based Node Positive Ev-
idence Estimation (KNPE) method is applied for esti-
mating prior evidence. Experimental results prove both
the effectiveness and efficiency of ML-EGNNs on de-
tecting OOD samples in multi-label graphs. For this
work, we considers OOD nodes which only contain OOD
labels. In the future, we will leverage detection on
nodes that contain both ID labels and OOD labels under
multi-label setting, which is a more challenging issue.
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