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Abstract

We present a novel multi-source uncertainty prediction approach that enables deep
learning (DL) models to be actively trained with much less labeled data. By
leveraging the second-order uncertainty representation provided by subjective logic
(SL), we conduct evidence-based theoretical analysis and formally decompose the
predicted entropy over multiple classes into two distinct sources of uncertainty:
vacuity and dissonance, caused by lack of evidence and conflict of strong evidence,
respectively. The evidence based entropy decomposition provides deeper insights
on the nature of uncertainty, which can help effectively explore a large and high-
dimensional unlabeled data space. We develop a novel loss function that augments
DL based evidence prediction with uncertainty anchor sample identification. The
accurately estimated multiple sources of uncertainty are systematically integrated
and dynamically balanced using a data sampling function for label-efficient active
deep learning (ADL). Experiments conducted over both synthetic and real data
and comparison with competitive AL methods demonstrate the effectiveness of the
proposed ADL model.

1 Introduction
Deep learning (DL) models establish dominating status among other types of supervised learning
models by achieving the state-of-the-art performance in various application domains. However,
such an advantage only emerges when a huge amount of labeled training data is available. This
limitation slows down the pace of DL, especially when being applied to knowledge-rich domains,
such as medicine and biology, where large-scale labeled samples are too expensive to obtain from
well-trained experts. Meanwhile, active learning (AL) has demonstrated great success by showing
that for many supervised models, training samples are not equally important in terms of improving
the model performance [1]. As a result, a carefully selected smaller training set can achieve a model
equally well or even better than a randomly selected large training set.

An interesting question arises, which is whether DL models can be actively trained using much less
labeled data. Recent efforts show promising results in this direction through Bayesian modeling [2]
and batch model sampling [3]. However, as DL models are commonly applied to high dimensional
data such as images and videos, a fundamental challenge still remains, which is how to most
effectively explore the exponentially growing feature space to select the most useful data samples for
active model training. Existing AL models usually leverage the model provided information, such as
estimated decision boundaries or predicted entropy for data sampling. However, the deep structure
and the large number of parameters of DL models make model overfitting almost inevitable especially
in the early stage of AL when only very limited training data is available. As a result, the model may
provide misleading information that makes data sampling from a high-dimensional search space even
more difficult. Besides a high dimensionality, complex data may contain a large number of classes
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Figure 1: A dataset consists of three mixtures of Gaussian’s (shown in red, blue, and yellow), each
of which has a large and small clusters of data samples. (a) Softmax predicted entropy; (b) ADL
predicted entropy; (c) ADL predicted vacuity; (d) ADL predicted dissonance.

and data samples from certain classes may be completely missing. Such situations are quite common
for domains, such as scientific discovery (e.g., gene function prediction) and anomaly detection. AL
models should be able to effectively discover these out of distribution (OOD) samples for labeling in
order to achieve an overall good prediction performance.

Uncertainty sampling has been one of the most commonly used pool-based AL models. In particular,
a model chooses the data sample that it is least certain about. Thus, once the sample is labeled, model
uncertainty can be significantly reduced. As an information-theoretic measure, entropy provides
a general criterion for uncertainty sampling. Some commonly used sampling methods, including
least confident and margin based strategies, are equivalent to entropy-based sampling in binary
classification [1]. It is also straightforward to generalize to multi-class problems.

A key challenge of entropy-based sampling for AL is that the predicted entropy may be highly
inaccurate, especially in the early state of the AL. Such an issue may become more severe when
training a neural network (NN)/DL active learner due to model overfitting as described above.
Figure 1(a) shows the predicted entropy by an NN active learner trained using nine labeled data
samples, which are in black color and evenly distributed in three classes. The standard softmax layer
is used in the output layer to generate class probabilities over three classes, each of which is a mixture
of two Gaussian’s. It turns out that all the data samples in the three small clusters located in the top
left, top right, and bottom center, are wrongly predicted with high confidence, as indicated by the low
entropy. As a result, data samples from these three clusters are less likely to be selected for labeling.
In contrast, the data samples that are close to the center of the three major clusters are more likely to
be selected. However, labeling these samples will have the effect of fine-tuning a wrongly predicted
decision boundary, leading to a much higher (but less effective) labeling cost.

Figure 1(b) shows the result from the proposed active deep learning (ADL) model. While the samples
from the small clusters are still wrongly predicted due to lack of training data, they are predicted with
a much lower confidence as indicated by the high entropy. However, even with a more accurately
predicted entropy, the active learner may still sample from the center of the three major clusters
as it is also assigned a high entropy along with the areas that cover the three smaller clusters. By
leveraging the evidenced based probabilistic constructs developed under the subjective logic (SL)
framework [4], we formally decompose entropy into two distinct sources of uncertainty: vacuity and
dissonance, which are caused by lack of evidence and conflict of strong evidence, respectively. When
putting the vacuity and dissonance as shown in Figures 1(c) and (d) together, it is interesting to see
that we recover the entropy as shown in Figure 1(b), which empirically verifies our theoretical results.
Entropy decomposition provides further insights on the sources on uncertainty, which is instrumental
to guide the data sampling process. Intuitively, given the dataset in Figure 1, an effective sampling
strategy will first choose samples from the three small clusters according to vacuity in the early stage
of AL to properly establish the shape of the decision boundary. It can then fine-tune the decision
boundary by sampling according to dissonance. Such an uncertainty-aware sampling strategy will
be critical for a high-dimensional space with multiple competing classes where data samples are
scarcely distributed and the decision boundary becomes more complicated.

Our major contribution is threefold: (1) theoretical decomposition of entropy into evidence-based
second-order uncertainties, including belief vacuity and belief dissonance; (2) a multi-source uncer-
tainty prediction model that accurately quantifies different sources of uncertainty; (3) an active deep
learning model that systematically integrates different types of uncertainty for effective data sampling
in a high-dimensional space. Extensive experiments are conducted over both synthetic and real-world
data to demonstrate the effectiveness of the proposed ADL model.
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2 Related Work
Uncertainty Quantification in Belief/Evidence Theory: In belief/evidence theory, uncertainty rea-
soning has been substantially explored through Fuzzy Logic [5], Dempster-Shafer Theory (DST) [6],
and Subjective Logic (SL) [4]. Unlike the efforts made in ML/DL, belief theorists focused on
reasoning of inherent uncertainty in information resulting from unreliable, incomplete, deceptive,
and/or conflicting evidence. SL considered uncertainty in subjective opinions in terms of vacuity
(i.e., lack of evidence) and vagueness (i.e., failure of discriminating a belief state) [4]. Vacuity has
been used as an effective vehicle to detect OOD queries through evidence learning, achieved under
the typical DL setting with ample training samples [7]. Recently, other dimensions of uncertainty
have been studied, such as dissonance (due to conflicting evidence) and consonance (due to evidence
about composite subsets of state values) [8].

Uncertainty in Deep Learning: In DL, aleatoric uncertainty (AU) and epistemic uncertainty (EU)
have been studies using Bayesian Neural Networks (BNNs) for computer vision. AU consists of
homoscedastic uncertainty (i.e., constant errors for different inputs) and heteroscedastic uncertainty
(i.e., different errors for different inputs) [9]. A Bayesian DL (BDL) framework was presented to
estimate both AU and EU simultaneously in regression (e.g., depth regression) and classification set-
tings (e.g., semantic segmentation) [10]. A new type of uncertainty, called distributional uncertainty,
is defined based on distributional mismatch between the test and training data distributions [11].
Other than exploring the new sources of uncertainty, recent works also focus on better estimating
the well-known first-order uncertainty, predictive entropy, in DL models through calibration [12] or
ensemble [13] methods. Even though the recent efforts offer abundant uncertainty measurements for
DL, how to leverage these uncertainty information for better active sampling remains sparse. For
example, while distributional uncertainty can be used for data sampling in AL, the prior network in
[11] needs to be properly trained as its parameter must encapsulate knowledge of both in-domain
distribution and the decision boundary, making it not very suitable for AL. This is also evidenced
by our experimental results on real-world data. The Noise-Contrastive Priors can also be used to
support better exploration in data sampling as it encourages high uncertainty near the boundary of the
training data [14]. However, in the initial phase of AL when the training data is very limited, this
measure can be insufficient to explore data samples faraway from the training data.

Active Learning in Deep Learning: The common AL methods other than DL-based ones are
surveyed in [1]. There are limited efforts on actively training DL models for high-dimensional data
with a few exceptions. In [15], an AL model was developed for DL using three metrics for data
sampling: least confidence, margin sampling, and entropy. A new approach combines recent advances
in BDL into the AL framework to achieve label-efficient DL training [2]. Another approach advances
the AL development by introducing a cost-effective strategy to automatically select and annotate
the high-confidence samples, which improves the traditional sample selection strategies [16]. Data
sampling in DL has also been approached as core-set selection problem [3] or disparate and high
magnitude selection in a hallucinated gradient space [17], which require a large batch to work well.

Different from all existing works, the proposed ADL model decomposes the accurately estimated
uncertainty into two second-order uncertainties: vacuity and dissonance, and dynamically balances
multi-source uncertainty to achieve active training of DL models with much less labeled data.

3 Evidence-Aware Entropy Decomposition
As discussed earlier, a high entropy may be contributed by difference sources of uncertainty with
distinct characteristics. In this section, we conduct a fine-grained theoretical analysis of different
types of uncertainty that arise in the context of multi-class problems. The decomposition is conducted
under the SL framework, which provides key building blocks for our theoretical analysis.

3.1 Theory of Subjective Logic
Overview. SL is an uncertain probabilistic logic that is built upon probabilistic logic (PL) [18]
and belief theory (BT) [19] while making two unique extensions. First, SL explicitly represents
uncertainty by introducing vacuity of evidence (or uncertainty mass) in its opinion representation,
which addresses the limitation of using PL to model lack of confidence in probabilities. Second, SL
extends the traditional belief function of BT by incorporating base rates, which serve as the prior
probability in Bayesian theory. The Bayesian nature of SL allows it to use second-order uncertainty
to express and reason the uncertainty mass, where second-order uncertainty is represented in terms of
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a probability density function (PDF) over first-order probabilities [4]. In particular, for multi-class
problems, we use a multinomial distribution (first-order uncertainty) to model class probabilities
and use a Dirichlet PDF (second-order uncertainty) to model the distribution of class probabilities.
Second-order uncertainty enriches uncertainty representation with evidence information, which plays
a central role in entropy decomposition as detailed later.

Subjective opinions (or opinions) are the arguments in SL. In the multi-class setting, the subjective
opinion of a multinomial random variable y in domain Y = {1, ...,K} is given by a triplet

ω = (b, u,a), with
K∑

k=1

bk + u = 1 (1)

where b = (b1, ..., bK)T , u, and a = (a1, ..., aK)T denote the belief mass over Y, uncertainty mass
representing vacuity of evidence, and base rate distribution over Y, respectively, and ∀k, ak ≥ 0, bk ≥
0, u ≥ 0. The probability that y is assigned to class k is given by

P (y = k) = bk + aku, ∀k ∈ Y (2)
which combines the belief mass with the uncertain mass using the base rates. In the multi-class
setting, ak can be regarded as the prior preference over class k. When no preference is given, we
assign all the base rates as 1/K.

Transition between first- and second-order uncertainties. In existing SL literature, there lacks
a clear transition between the first-order uncertainty given in equation 2 and the second-order
uncertainty expressed as a Dirichlet PDF. Here, we make this transition explicit by introducing a
set of random variables p = (p1, ..., pK)T , distributed on a (K − 1)-dimensional simplex. We
introduce a conditional distribution P (y = k|pk) = pk, which allows us to represent the marginal
distribution in equation 2 by P (y) =

∫
P (y|p)p(p)dp. We define p(p) as a Dirichlet PDF over p:

Dir(p|α), where α = (α1, ..., αK)T is K-dimensional strength vector, with αk ≥ 0 denoting the
effective number of observations of class k. SL explicitly introduces the uncertainty evidence through
a non-informative weight W and redefine the strength parameter as

αk = rk + akW, with rk ≥ 0,∀k ∈ Y (3)
where rk is the amount of evidence (or the number of observations) to support the k-th class and W
is usually set to K, i.e., the number of classes. Given the new definition of the strength parameter, the
expectation of the class probabilities p = (p1, ..., pK)T is given by

E[pk] =
αk∑K
j=1 αj

=
rk + akW∑K
j=1 rj +W

(4)

where ak = 1/K. Marginalizing p leads to an evidence-based expression of belief mass and
uncertainty mass (existing SL literature [4] arrives at the following definitions using a set of mapping
rules that are not strictly defined using probability terms as in our approach):

bk =
rk
S
∀k ∈ Y, u =

W

S
, with S =

K∑
k=1

αk (5)

Second-order (evidence-based) uncertainties. SL categorizes uncertainty into two primary
sources [4, 8]: (1) basic belief uncertainty that results from specific aspects of belief mass in
isolation and (2) intra-belief uncertainty that results from the relationships between belief masses and
uncertainty mass. Since we focus on the multi-class setting, no composite values (i.e., simultaneously
assigned to multiple classes) are allowed. As a result, these two sources of evidence-based uncertainty
boil down to vacuity and dissonance, respectively, that correspond to vacuous belief and contradicting
beliefs. In particular, vacuity of an opinion vac(ω) is captured by uncertainty mass u, which is
defined in equation 5 and dissonance of an opinion is defined as

diss(ω) =

K∑
k=1

(
bk
∑

j 6=k bjBal(bj , bk)∑
j 6=k bj

)
,Bal(bj , bk) =

{
1− |bj−bk|bj+bk

if bibj 6= 0

0 if min(bi, bj) = 0
(6)

where Bal(bj , bk) is the relative mass balance function between two belief masses. The belief
dissonance of an opinion is measured based on how much belief supports individual classes. Consider
a binary classification example with a binomial opinion given by (b1, b2, u,a) = (0.49, 0.49, 0.02,a).
Based on equation 6, it has a dissonance value of 0.98. In this case, although the vacuity is close to
zero, a high dissonance indicates that one cannot make a clear decision because both two classes have
the same amount of supporting evidence and hence strongly conflict with each other.
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3.2 Evidence-Based Entropy Decomposition
By leveraging the second-order uncertainty representation, we formally show that the entropy of
a predicted class distribution P (y) can be decomposed into vacuity and dissonance. Our major
theoretical results indicate that the uncertainty of a high-entropy data sample may be caused by either
lack of evidence (i.e., high vacuity) or conflict of strong evidence (i.e., high dissonance) but not
both. By clearly identifying the sources of uncertainty instead of using them in a combined form as
in entropy, the evidence based decomposition of entropy provides deeper insights on the nature of
uncertainty, which provides important guidance for an AL model to more effectively explore a large
and high-dimensional search space for efficient data sampling.

Lemma 1. Dissonance maximization. Given a total Dirichlet strength S = CK, where C ≥ 1 and
K is the number of classes, for any opinion ω on a multinomial random variable y, we have

max diss(ω) = 1− 1

C
(7)

Corollary 1. The dissonance diss(ω) is approaching (but not reaching) 1 when all the evidence rk’s
are set to equal and S →∞; it reaches 0 when S = K:{

limS→∞ diss(ω) = 1 if r1 = ...rk... = rK
diss(ω) = 0 if S = K

(8)

Lemma 2. Vacuity maximization. For any opinion ω on a multinomial random variable y, we
have 0 ≤ vac(ω) ≤ 1 and the maximum vacuity is achieved when

∑K
k=1 rk = 0.

Theorem 1. Let y denote a multinomial random variable, ωy denote its opinion, S denote its total
Dirichlet strength, and H[y] be the entropy of y. H[y] can be maximized under two different and
non-overlapping conditions: (1) y∗ = arg maxH[y] ⇔ y∗ = arg max vac(ωy) if S = K and
ak = 1/K,∀k; (2) y∗ = arg maxH[y]⇔ y∗ = arg max diss(ωy), if C →∞.

Details proofs are provided in Appendix A. A more intuitive interpretation of the main results in
Theorem 1 is as following. A high-entropy data sample supported by a strong evidence (i.e., S � K)
is caused by a high dissonance (i.e., conflict of evidence); a high-entropy data sample supported by
little evidence (i.e., S ≈ K) is caused by a high vacuity (i.e., lack of evidence). Through the second-
order uncertainty representation, we offer an evidence based interpretation of entropy that allows
us to identify two different sources of uncertainty that both cause a high entropy. The multi-source
uncertainty will provide important information to design a fine-grained sampling function for AL,
which will be detailed in next section.

4 Multi-source Uncertainty Aware Active Deep Learning
In order to best use the uncertainty information, the ADL model should first be able to provide an
accurate uncertainty estimation based on very limited training data. This, coupled with the large
number of parameters of the DL model, poses a fundamental challenge due to a higher risk of model
overfitting. As shown earlier, inaccurate uncertainty estimation will cause the model to miss labeling
important data samples that can help accurately detect the decision boundary if labeled.

In addition, since both vacuity and dissonance are derived from second-order uncertainty, solely
predicting the class label or its distribution does not provide sufficient information for multi-source
uncertainty prediction. Instead, the proposed ADL model directly estimates the supporting evidence
(i.e., rk’s) for each class, which is a central element that can be used to quantify belief mass and
uncertainty mass according to equation 5. To better address overfitting, we develop a novel loss
function that augments DL based evidence prediction with uncertainty anchor sample identification.
These anchor samples are unlabeled data that inform the ADL which areas of the data space are
important but less explored. Optimizing this loss function will ensure that ADL predicts high vacuity
over these areas. Finally, we introduce our novel sampling function that systematically integrates
accurately estimated multi-source uncertainty for active deep learning.

4.1 Uncertainty Anchor Sample Identification
The desired anchor samples should meet two important criteria: (i) indicative of the less explored
areas in the data space, and (ii) representative of a group of unlabeled samples instead of be-
ing an isolated outlier. These properties ensure ADL to effectively prioritize the sampling order
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over these areas and iteratively visit them based on data density. It is also important that anchor
samples can be identified efficiently to support fast data sampling for real-time AL. To this end,
we define relative similarity for efficient anchor sample selection: A∗ = {x|RS(x) ≥ λ}, with
RS(x) =

∑
xn∈Xu

sim(f(x), f(xn))/
∑
xn∈Xt

sim(f(x), f(xn)), where Xu and Xt denote the
sets of unlabeled candidate and training samples, respectively; f is an embedding function that maps
a high-dimensional feature vector x to a low-dimensional embedding, which can be achieved through
a neural network (e.g., a convolutional autoencoder for image data or word embedding for text data);
and sim(·, ·) is a similarity function defined in the low-dimensional embedding space (a RBF kernel
is used in our experiments). Intuitively, the numerator ensures that the selected area has abundant
candidate unlabeled data points to sample so that it has lower risk of containing isolated noise. The
denominator makes sure the selected region is located OOD with respect to the current training data.

4.2 Multi-Source Uncertainty Prediction
The set of uncertainty anchor samples A∗ represents areas in the data space that are cohesively
distributed far away from the current training data. As these data are essentially OOD with respect
to the current training data, their predicted vacuity should be high, which implies low predicted
evidence due to Lemma 2. We leverage this information by constructing an evidence strength loss,
L(u)
Evi, which forces the model to predict low evidence for xu ∈ A∗:

L(u)
Evi(A

∗,Θ) = 1T
(xu∈A∗)f(xi|Θ) (9)

where 1(C) = 1 if C is true and 0 otherwise; ri = f(xu|Θ) is the output of the DL model,
representing the predicted supporting evidence of xu, and Θ is the set of DL model parameters. Since
we require rk ≥ 0, an activation layer (i.e., ReLu) is used to replace the softmax layer as commonly
used in other NN classifiers. The evidence strength loss is the key component of our proposed overall
loss function. Samples in A∗ act as anchors to provide the model a preview of certain areas that
out of its current knowledge. The model is guided to put less belief mass on those areas, leading to
more accurate uncertainty estimation and eventually benefit the multi-source uncertainty based data
sampling. Furthermore, since the activation layer is used for model output, equation 9 essentially
performs l1 regularization to last hidden layer’s weight matrix and bias vector. We want to emphasize
that our approach demands no additional labeling cost. The anchor samples are dynamically detected
according to the current training and put into use without their actual label being known.

We proceed to define our overall loss function. For training sample xi, let yi encode the ground-true
class label k by setting yik = 1 and yij = 0,∀j 6= k. Let Cat(ŷi = k|pi(Θ)) be the likelihoood,
where pi(Θ) ∼ Dir(pi|αi(Θ)) and αi(Θ) = f(xi|Θ) +Wai. We set the non-informative weight
W = K and base rates aik = 1/K,∀k. The expected sum of squares loss is defined as

L(i)(Θ) = Epi∼Dir(pi(Θ)|αi(Θ))||yi − pi||22 =

K∑
j=1

(y2
ij − 2yijE[pij(Θ)] + E[pij(Θ)2]) (10)

Minimizing L(i)(Θ) has the effect of jointly minimizing the prediction error and the variance of
pi [7], hence reducing the uncertainty. This can be seen using identity E[pij(Θ)2] = E[pij(Θ)]2 +

Var(pij(Θ)) and rearranging the terms on the r.h.s. of equation 10. Our overall loss function is:∑
xi∈Xt

L(i)(Θ) + λ1

∑
xu∈Xu

L(u)
Evi + λ2L2(Θ) (11)

where L2(Θ) is the L2 regularizer of network parameters.

4.3 Data Sampling for Active Deep Learning
According to Lemma 2, a data sample’s vacuity is maximized when the model assigns zero evidence to
allK classes. This indicates the model has never seen a similar data sample from training. Annotating
samples with a large vacuity can help the ADL gain most new knowledge of the data space. It has
the effect of guiding the model to explore the most important areas, which is especially critical for a
high-dimensional data space. In AL, the true decision boundary can be easily skewed due to limited
initial training. The vacuity-aware search helps the model fast converge to the true decision boundary
without excessively sampling around the wrong one. Moreover, it is also effective to discover new
types of classes whose instances have never been exposed to the model, as shown in our experiments.
According to Lemma 1, a data sample’s dissonance is maximized when the model assigns equally

6



−2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

Entropy(EDL)

0.48

0.56

0.64

0.72

0.80

0.88

0.96

1.04

1.12

(a)
−2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

Vacuity(EDL)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

(b)
−2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

Dissonance(EDL)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)
0 50 100 150 200 250 300

AL Iterations

0.70

0.75

0.80

0.85

0.90

Te
st
 A
cc
ur
ac
y

AL Performance

ADL
EDL_diss+vac
softmax_en
EDL_en
Random

(d)

Figure 2: Uncertainty prediction results from EDL: (a) Entropy, (b) Vacuity, and (c) Dissonance; (d)
AL performance comparison
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Figure 3: (a) Vacuity and (b) Dissonance of iteration 6 when ADL first discovers all hidden OOD
areas; (c) Vacuity of iteration 13 when ADL starts penalizing vacuity in the sampling function; (d)
Dissonance after two iterations of penalizing vacuity.

high (close to infinity) evidence to all K classes. These strong conflicting evidence received from
different classes indicate that the data sample is located near the decision boundary where multiple
classes are heavily overlapped. Annotating samples with high dissonance helps the model further
fine-tune the decision boundary, leading to better discriminative power.

We design a sample function that best leverages these two important and complementary sources of
uncertainty to most effectively guide ADL. Intuitively, we would like ADL to rely more on vacuity in
the early phase of AL, which can most effectively shape the decision boundary and avoid fine-tuning
the wrong decision areas. As AL goes, dissonance should gradually gain a higher weight, which
allows ADL to further fine-tune the decision boundary that has the right shape but is less accurate,
aiming to maximize the discriminate power of the model. The sample function is given:

x∗ = arg max
x∈Xu

[diss(ω(x)) + βvac(ω(x)] (12)

where β is an annealing coefficient to gradually balance between vacuity and dissonance. Specifically,
the importance of vacuity reduces as there are less “vacuous” areas in the data space w.r.t. the current
training data. This implies that the training data can well approximate the entire data space. To
achieve this, we define 1/β = minxu∈Xu

maxxt∈Xt
sim(f(xt), f(xu)) and set β = max{0, 1−dT}

if it does not change within the past few AL iterations, where T denotes the current iteration of AL
and d is a fixed decay rate (set to 1/100K in our experiments).

5 Experiments
We report our experimental results on both synthetic and real-world data. The former aims to verify
the key theoretical properties of ADL, including entropy decomposition and multi-source uncertainty
prediction, and how these properties contribute to AL. The real-data experiment aims to compare
ADL and its competitors. We focus on testing in classical AL environment, where the initial training
set only includes limited samples from some classes with samples from other classes completely
missing. In each AL iteration, we sample one data instance. This is fundamentally different than
some recent DL based AL methods, such as [3, 17], which perform batch-mode sampling with a large
batch size (larger than our entire labeled samples). Thus, these models are not applicable when only
limited label budgets are available which is true for many special domains where labeling is very
costly. All models uses the same DL architecture. For synthetic data, we adopt a 3-layer MLP with
tanh for activation. For real data, we use LeNet with Relu for activation.

5.1 Synthetic data
The synthetic experiment is designed to show: (1) whether ADL accurately captures different sources
of uncertainty, and (2) whether accurately estimated uncertainty leads to better AL behavior. To
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Figure 4: AL performance on MNIST (start with 5-8 classes)
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Figure 5: AL performance on notMNIST and CIFAR-10 (start with 5, 6 classes; 7,8 in Appendix)

mimic the existence of OOD, we generate three mixtures of Gaussian’s. Each mixture consists of a
major and a smaller (i.e., OOD) clusters with 750 and 50 samples, respectively. We center the major
Gaussian components from each class and put their corresponding OOD components away from them.
Figure 1 shows that a classical DL model with a softmax layer provides very inaccurate uncertainty
estimation. In contrast, the proposed ADL model not only provides accurate entropy prediction but
also successfully decomposes it into vacuity and dissonance. Figure 2 shows the uncertain prediction
result from EDL [6], which can also provide evidence prediction but requires ample training data.
Suffering from insufficient training, EDL is inaccurate in its entropy prediction, especially for the
OOD clusters. While EDL does not provide entropy decomposition, we use its predicted evidence
to compute vacuity and dissonance as shown in Figure 2. However, neither of them is accurately
predicted as low vacuity is predicted for the three OOD clusters where there is no training data and
high dissonance is predicted in areas with no nearby training data to show conflicting evidence.

Figure 3 shows the first time when ADL selects at least one data sample from each OOD area, high
vacuity is assigned to an area with no training data but many unlabeled data. Meanwhile, high
dissonance indicates that refining the decision boundary may be more instrumental to improve the
model performance. A few iterations later, ADL starts to penalize dissonance. While vacuity is still
accurately estimated (high in vacuous regions), it becomes less useful for sampling (since very few
unlabeled data is located nearby). Two iterations later, penalizing on dissonance helps to choose data
samples that significantly refine the decision boundary. The superior AL performance of ADL as
shown in Figure 2 further confirms the effectiveness of ADL’s key properties as demonstrated above.

5.2 Real data
The real-world experiment is conducted on three datasets, MNIST, notMNIST, and CIFAR-10,
all of which have ten classes. To mimic the real-world AL scenario, we leave 2-5 classes out
for initial training. A good AL model is expected to discover samples of unknown classes in an
early stage to effectively improve model accuracy. We compare the proposed model with EDL [7]
(entropy, vacuity+dissonance), BALD [2] (epistemic), PriorNN [11] (distributional uncertainty),
and softmax (entropy, random), where in the parenthesis are the uncertainty measurements used for
sampling. Figures 4 and 5 show that ADL consistently outperforms other models on all three datasets.
The advantages of ADL are twofold. First, entropy decomposition gives ADL flexibility to meet
distinct sampling need at different AL phases. In an early stage, the fast accuracy improvement is
achieved by the vacuity guided sampling where the most representative samples are labeled with high
priority. Gradually, ADL switches to dissonance guided sampling to refine the decision boundary
by labeling the most informative samples to improve its discriminative power. In contrast, sampling
methods utilizing a unified uncertainty (e.g., epistemic, distributional uncertainty and entropy) lack
such flexibility to adjust the sampling behavior, leading to either slow convergence or lower model
accuracy. Second, compared with EDL, which can also perform evidence prediction, ADL is superior
due to accurate uncertainty estimation using the effective loss function. For both synthetic and real
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data, we observe that ADL identifies samples from missing classes at least around 20% faster than
using EDL and other models.

We also conducted a thorough ablation study to justify the effectiveness of each major technical
component, including sampling function, vacuity/dissonance balance, anchor sample identification,
and related model parameters. Additional comparisons with the state-of-the-art batch-mode AL
models [3, 17] are also performed. ADL shows clear advantage in single batches and also performs
better in small batches of 2-4. Since ADL is not designed for batch sampling, it becomes less effective
for larger batches with a size greater than 6. Detailed results are reported in Appendix C and D.

5.3 Discussions
The subjective logic framework provides a strong theoretical underpinning to perform a principled,
fine-grained analysis between the 1st-order uncertainty (i.e., predictive entropy as the total uncertainty)
and 2nd-order uncertainty (vacuity + dissonance), where evidence plays a central role to unveil
the underlying (dynamic) relationship among different uncertainties. Understanding this dynamic
relationship is essential to derive a theoretically sound data sampling process in AL. In particular,
Theorem 1 shows the total uncertainty dynamically shifts between high vacuity and high dissonance
as more evidence is collected. Guided by this theory, AL can be regarded as an evidence collection
process. The evidence-based uncertainties (i.e., vacuity + dissonance) derived under SL, offer a
natural way to determine the sources of uncertainty during AL, which starts by focusing on vacuity
in early stage when evidence is limited and then gradually shifts to dissonance. Since vacuity and
dissonance both depend on evidence, using evidence provides a principled way to trace the dynamic
shift between these two sources of uncertainty to best guide data sampling in AL. This is the key
advantage over other types of uncertainty, such as epistemic, aleatoric, and distributional uncertainty,
which only focus a certain aspect of uncertainty, and their (dynamic) relationship is hard to be
precisely quantified as in vacuity and dissonance. Thus, using these uncertainty measures lacks the
capability to dynamically adjust the sampling process as the nature and focus of uncertainty change
when more data samples are labeled. In sum, while there are various forms of uncertainty measures,
the evidence-based (2nd-order) uncertainty, i.e., vacuity + dissonance, offers the most suitable way
for active sampling, as justified by our theory and empirical evaluation. Our experimental results
clearly show that ADL converges much faster than other uncertainty based sampling functions, which
empirically confirms its effectiveness in AL.

6 Conclusion

We present a novel active deep learning model that systematically leverages two distinct sources of
uncertainty, vacuity and dissonance, to effectively explore a large and high-dimensional data space
for label-efficient training of DL models. The proposed ADL model benefits from the evidence-
based entropy decomposition that follows from our theoretical analysis of belief vacuity and belief
dissonance under the SL framework. The multi-source uncertainty can be accurately estimated
through a novel loss function that augments DL based evidence prediction with vacuity-aware
regularization of the model parameters. Through dynamically balancing the importance of vacuity
and dissonance, a sampling function is designed to first explore the critical areas of the data space
and then fine-tune the decision boundary to maximize its discriminate power. Extensive experiments
conducted over both synthetic and real data help verify the theoretical properties and empirical
performance of the proposed ADL model.

Broader Impact

The ability to train high-quality supervised learning models opens the gate to effectively leveraging
machine intelligence in many critical domains, where domain expertise is scarce and data label-
ing is costly. The proposed research suggests a paradigm shift to train statistical models that is
fundamentally different from existing data-intensive statistical analysis tools, including most deep
learning models, where massive amounts of training data are required to ensure model performance.
Furthermore, the research will also contribute novel (both theoretical and empirical) methodologies to
conduct uncertainty analysis of neural network/deep learning models. The importance of uncertainty
analysis plays an essential role to establish human-machine trust to support complex human-machine
collaborative decision-making in critical missions and to ensure AI safety as AI systems have been
more broadly adopted in society.
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