UNCERTAINTY AWARE SEMI-SUPERVISED LEARNING ON GRAPH DATA

Xujiang Zhao?, Feng Chen?, Shu Hu?, Jin-Hee Cho?

eeeeeeeeeee

1The University of Texas at Dallas, ?University at Buffalo, SUNY, 3Virginia Tech

INTRODUCTION

Consider a classifier only knows two classes: car’ and ‘road’

Incorrect prediction

mmmm) igh Uncertainty

Misclassify “car” as “road”

Out-of-distribution (OOD)
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Quantifying predictive
uncertainty is important for
safely-critical applications

Misclassify “deer”
(OOD object) as “car”

Multiple Uncertainties

Probabilistic Uncertainty: ~ Evidential Uncertainty:

Epistemic (limited data) Vacuity (lack of evidence)
Aleatoric (randomness) Dissonance (conflicting evidence)

MOTIVATION

Task: 3 class image classification
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(b) Graph-Based Kernel
Dirichlet Estimation | I

(e) Multiple Uncertainties

(a) Subjective Bayesian GNN - (c) Teacher Network I (d) Square Loss ;

Key properties of this model.
(a) S-BGNN: providing the multiple uncertainties (c) Teacher Network: refining the class probability

(b) GKDE: predicting Dirichlet more accurately  (d) Square loss: minimizing prediction error and variance

EXPERIMENTAL RESULTS
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Extension to Other Deep Learning Model (CNN)
Provide pixel-level predictive uncertainties by replacing GNN with CNN
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Relationships Between Multiple Types of Uncertainties

Consider a simple scenario:
y: a multinomial random variable
y ~ Cal(p): y follows a K-class categorical distribution
p ~ Dir(a): class probabilities p follows a Dirichlet distribution

General relations on all prediction scenarios

vacuity + dissonance < 1 vacuity > epistemic

Special relations on the out-of-distribution (OOD)

1 = vacuity = entropy > aleatoric > epistemic > dissonance = 0

Special relations on the Conflicting Prediction (CP)
entropy = 1, dissonance — 1, aleatoric — 1, vacuity — 0, epistemic — 0

entropy > aleatoric > dissonance > vacuity > epistemic

« Higher vacuity leads to a lower dissonance, and vice versa.

« Vacuity indicates an upper bound of epistemic uncertainty.

« Entropy cannot distinguish different types of uncertainties caused by
different root causes.

« High aleatoric uncertainty and low epistemic uncertainty are
observed under both cases.

« Vacuity and dissonance can clearly distinguish OOD from a CP.

Impact of Graph-based Kernel Dirichlet Distribution Estimation

Given L training nodes and two testing nodes i and j,
Letd; = [dy, ..., di], d; = |djy, ..., d;,| be the graph
distances from training nodes.

Training nodes :

Ifforalll € {1, ...,L},d;; < dj;, we have

————

vacuity; < vacuity; < .
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estimated based on GKDE.

High vacuity occurs when testing node is far away

from training nodes.

SUMMARY

* Proposed a multi-source uncertainty framework of GNNSs.

* Provided a theoretical analysis about the relationships £y
between different types of uncertainties. @| ||.| ','| '||E)

- Demonstrate the use of vacuity for OOD detection and “| '.f: " '.l II' l'l |.
dissonance for misclassification detection. ol |||' '| r
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https://github.com/zxj32/uncertainty-GNN
https://zxj32.github.io/data/NIPS2020-Uncertainty_slides.pdf

