Uncertainty Aware Semi-Supervised Learning on Graph Data

Xujiang Zhao¹, Feng Chen¹, Shu Hu², Jin-Hee Cho³
¹The University of Texas at Dallas, ²University at Buffalo, SUNY, ³Virginia Tech

INTRODUCTION

Consider a classifier only knows two classes: "car" and "road"

Incorrect prediction

- High Uncertainty

Out-of-distribution (OOD)

- High Uncertainty

Quantifying predictive uncertainty is important for safety-critical applications

MULTIDIMENSIONAL UNCERTAINTY FRAMEWORK

- Given: graph $G = (V, E, r, y_t)$
- Edge e: node-level feature
- y_t: training label
- Goal: Predict
 - Class probabilities p
 - Multidimensional uncertainty u

EXPERIMENTAL RESULTS

- Misclassification Detection
- OOD Detection

Key Merits of GKDE

- Provide pixel-level predictive uncertainties by replacing GNN with CNN

SUMMARY

- Proposed a multi-source uncertainty framework of GNNs.
- Provided a theoretical analysis about the relationships between different types of uncertainties.
- Demonstrate the use of vacancy for OOD detection and dissonance for misclassification detection.

Key Theoretical Results

- Relationships Between Multiple Types of Uncertainties

Consider a simple scenario:

- y: a multinomial random variable
- $y \sim \text{Cat}(p)$: y follows a K-class categorical distribution
- $p \sim \text{Dir}(\alpha)$: class probabilities p follows a Dirichlet distribution

Experimental Results

- PR curves on Pubmed
- PR curves on Amazon Computers

Results

- AUROC: 64%
- AUROC: 93%