

Uncertainty Aware Semi-Supervised Learning on Graph Data

Xujiang Zhao¹, Feng Chen¹, Shu Hu², Jin-Hee Cho³

¹The University of Texas at Dallas, ²University at Buffalo, SUNY, ³Virginia Tech

Why is predicting uncertainty important?

Uncertainty vs. Misclassification

When our model only knows `car' and `road,'

Incorrect prediction

Misclassify "car" as "road"

Misclassify "deer" (OOD object) as "car"

Is it important to know:
✓ why we don't know?
✓ how much we don't know?

So how can we predict the uncertainty based on its root cause?

Would it really help for our decision making?

Types of uncertainty

2

Epistemic uncertainty (a.k.a. model/parameter uncertainty)

- Measures what model doesn't know
- Due to limited data and knowledge

Aleatoric uncertainty (a.k.a. data uncertainty)

- Measures what you can't understand from the data
- Due to randomness

Vacuity uncertainty (a.k.a. ignorance)

• Measures uncertainty due to a lack of evidence

Dissonance uncertainty

Evidential Uncertainty

A subjective opinion modeled based on `Subjective Logic' which uses Dirichlet distribution to measure multiple dimensions of uncertainty in classification tasks

Why Evidential Uncertainty?

Problem Formulation

Given: graph $\mathcal{G} = (\mathbb{V}, \mathbb{E}, \mathbf{r}, \mathbf{y}_{\mathbb{L}})$

 \mathbb{V} : Node

- . Edge ₪
- r : node-level feature
- y_⊥ : training labels (*K* classes) a small set of training node (black circle)

Goal:

- class probabilities *p*
- multidimensional uncertainty *u*

Vacuity, dissonance, epistemic, aleatoric

Uncertainty Aware Framework

• Relations between multiple uncertainties

• Impact of Graph-based Kernel Dirichlet distribution Estimation

Consider a simplified scenario:

y: a multinomial random variable
y ~ Cal(p): follows a *K*-class categorical distribution
p ~ Dir(α): the class probabilities p follow a Dirichlet distribution

Probabilistic Uncertainty

$$\begin{aligned} \mathcal{I}[y,\mathbf{p}|\boldsymbol{\alpha}] &= \mathcal{H}\Big[\mathbb{E}_{\text{Prob}(\mathbf{p}|\boldsymbol{\alpha})}[P(y|\mathbf{p})]\Big] - \mathbb{E}_{\text{Prob}(\mathbf{p}|\boldsymbol{\alpha})}\Big[\mathcal{H}[P(y|\mathbf{p})]\Big]. \end{aligned}$$
Epistemic
Entropy
Aleatoric

Consider a simplified scenario:

y: a multinomial random variable
y ~ Cal(p): follows a *K*-class categorical distribution
p ~ Dir(α): the class probabilities p follow a Dirichlet distribution

Evidential Uncertainty

$$Dir(\alpha) \longleftrightarrow \omega = (\boldsymbol{b}, \boldsymbol{u}, \boldsymbol{a})$$

$$vac(\omega) = K / \sum_{k=1}^{K} \alpha_k$$

Vacuity (lack of evidence

$$diss(\omega) = \sum_{k=1}^{K} \left(\frac{b_k \sum_{j \neq k} b_j \operatorname{Bal}(b_j, b_k)}{\sum_{j \neq k} b_j} \right)$$

Dissonance (conflict evidence)

General relations on all prediction scenarios.

```
vacuity + dissonance ≤ 1
```

- ullet
- High vacuity Low dissonance High dissonance Low vacuity •

➢ Would not increase at same time!

	[[
Evidence	$e = \lfloor 1, 2 \rfloor$	$e = \lfloor 2, 2 \rfloor$	e = [2, 200]	e = [200, 200]
	lack of evidence	lack of evidence	confidence	conflicting evidence
Vacuity	High	High	Low	Low
dissonance	Low	Low	Low	High

General relations on all prediction scenarios.

vacuity > epistemic

- vacuity is an upper bound of epistemic uncertainty
- On a sufficiently large amount of evidence available, vacuity and epistemic would close to zero.

entropy > aleatoric > dissonance > vacuity > epistemic

 entropy cannot distinguish different types of uncertainty due to different root causes.

entropy > aleatoric > dissonance > vacuity > epistemic

 a high aleatoric uncertainty value and a low epistemic uncertainty value are observed under both cases.

entropy > aleatoric > dissonance > vacuity > epistemic

 vacuity and dissonance can clearly distinguish OOD from a conflicting prediction.

Impact of Graph-based Kernel Dirichlet distribution Estimation

Given L training nodes and two testing nodes i and j, Let $d_i = [d_{i1}, ..., d_{iL}]$, $d_i = [d_{j1}, ..., d_{jL}]$ be the graph distance from training nodes. Training nodes If for all $l \in \{1, ..., L\}, d_{il} \leq d_{il}$, we have $d_{i1} < d_{j1}$ $d_{i2} < d_{j2}$ $vacuity_i \leq vacuity_i$ estimated based on GKDE. High vacuity occurs when testing node is far away from training nodes.

Key Experiment Result

Why is Epistemic Uncertainty Less Effective than Vacuity?

Epistemic uncertainty works well in CV applications (supervised learning for OOD detection).

How epistemic uncertainty performances in SSL? Not good.

Key Merits of GKDE

Extension to other Deep Learning Model (CNN)

Provide pixel-level predictive uncertainties by replacing GNN with CNN

- Proposed a multi-source uncertainty framework of GNNs.
- Provided a theoretical analysis about the relationships between different types of uncertainties.
- Demonstrate the use of vacuity for OOD detection and dissonance for misclassification detection.

Any Question & Comments?

Xujiang Zhao, CS@UT-Dallas Xujiang.zhao@utdallas.edu