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Motivation

In a traffic network, how can we predict the
e How do we make decisions with traffic condition of unobserved roads (e.g.,

subjective, uncertain opinions? congested vs. non-congested)?
e Applications

e Trust in social networks
e Opinion diffusion
e Graph summarization.




Research Problem & Challenges

Given

e §=(V,E=YUX,f), an input network;

° {y(l), e 7y(T)}, the observations of a vector of input Boolean variables
and wy = (wy,, "+ ,wy,, ), the subjective opinions on y.

Predict wy, the unknown opinion on the vector of target Boolean variables x.

1st observation i observation T observation

How can we accurately and efficiently predict unknown opinions with a
large, heterogeneous, uncertain network data?



Contributions

Research goal: Develop a scalable, effective Deep Learning (DL)-based
opinion inference algorithm for a large, heterogeneous, uncertain network
data.

Key Contributions:

1. Combined non-parametric DL-based algorithm with an opinion
formalism of SL to deal with uncertainty of subjective opinions while
maximizing prediction accuracy.

2. Proposed a DL-based opinion inference algorithm characterizing
uncertainty based on a set of heterogeneous belief and uncertainty
in a large-scale network data while maximizing prediction accuracy
with minimum computation time by leveraging GCN and VAE
technology.

3. Validated the proposed DL-based opinion inference algorithm via
extensive simulation experiments using real-world datasets.



Binomial Opinion in Subjective Logic (SL)

e A binomial opinion is defined in terms of belief, disbelief, and
uncertainty towards a given proposition. An opinion w is represented
by

w=(b,d,u,a) (1)

where

b: belief (e.g., agree)

d: disbelief (e.g., disagree)

u: uncertainty (i.e., ignorance, vacuity, or lack of evidence)
e a: a base rate, a prior, general knowledge upon no commitment
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and

btdtu=1 (2)



SL’s Binomial Opinion with Beta Distribution

e A binomial opinion follows a Beta PDF, denoted by,

1
B(a, B

where « is the number of positive evidence and 3 is the number of

a—l(

Beta(pla, ) = 1-p)’! (3)

)P

negative evidence.
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e w = (a, 3), which can be translated to w = (b, d, u, a).



Fusion Operators with Uncertain Opinions in SL

e Discount operator, ®: Discount trust of an entity one wants to
interact when it does not have any direct interaction with the entity,
eg. wj = w @ w]




Uncertain Opinions in SL

e Discount operator, ®: Discount trust of an entity one wants to
interact when it does not have any direct interaction with the entity,
eg. wj = w @ w]

e Consensus operator, $: Find a consensus between two opinions
where two entities observe a same entity, e.g.,
wi = (wj @ wy) © (w, @ wy)

[Jgsang, Springer 2016]



Scalability Issue in Subjective Logic

When a network is large, there are too many paths to consider for fusing
them.




Scalability Issue in Subjective Logic

When a network is large, there are too many paths to consider for fusing
them.

Limitation
SL's operators are good for fusing two opinions in dyadic relationships;
not scalable for multiple opinions with large network data.



Collective Subjective Logic (CSL)

A variant of SL, combining Probabilistic Soft Logic (PSL) and Markov
Random Fields (MRFs) with SL

max, L(wx) = Jmax, log Prob(y; wx, wy)

s't'piEPFOb(Px,y‘y?WmWy)[1 - ri(Px,y)] < 6"7 ||§H5 < €, i = 17 e 7k

Prob(pyy|y; @)
Dy
S min KL
M — Step: E' — Step:
max F(q, w,) max F(q, w,)
N q€Q
~—
q(Px,
(Pxy) 0




Collective Subjective Logic (CSL)

A variant of SL, combining Probabilistic Soft Logic (PSL) and Markov
Random Fields (MRFs) with SL

max, L(wx) = Jmax, log Prob(y; wx, wy)

s't'piEPl’Ob(Px,y‘ﬁwx,wy)[1 - ri(pX»Y)] S £i7 ||§H,6 S €, i = 17 R k
Prob(p,|y; @)
Dy
S min KL
M — Step: E' — Step:
[ mwaxF(q,mx)] [ lggéd“(qrw,)]
~—~
a(psy) 0

Limitation
The assumption of distribution based on MRFs limits its capability to
deal with, large-scale, heterogeneous network data that may be lossy,

noisy, incomplete, and/or missing.
[Chen, Wang & Cho, Bigdata 2017]



Why Deep Learning?

Both SL and CSL are:

e not scalable.
e not effectively dealing with heterogeneous data.

How to Solve These Challenge?

10



Why Deep Learni

Both SL and CSL are:

e not scalable.
e not effectively dealing with heterogeneous data.
How to Solve These Challenge?

Graph Convolutional Network and Variational Autoencoder can
provide solutions for

e dealing with graph
network data

e modeling

heterogeneous .
dependency [Kipf & Welling, ICLR 2017]
. vy wim)
e processing large-scale " oD 52
: - i = £ gt
data (i.e., scalability) ,,(zm 8) (encoder) q(A|2) (decoden)

[Kingma & Welling, ICLR 2014] 10



Graph Convolutional Networks (GCN)

What capability can GCN offer?

e node level prediction (regression or classification)
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Graph Convolutional Networks (GCN)

What capability can GCN offer?
e node level prediction (regression or classification)

How to use the convolution operator on graph data effectively and
efficiently?
Graph Fourier Transform:

e Euclidean spaces: r =", ., fre®
e non-Euclidean spaces: r =", o = ¢ or
where L = ®APT, L is the GraI)h Laplacian matrix,
® = (¢p1, -+, ¢p) is the orthonormal eigenvectors and
A = diag(A1,- -+, A\p) is the diagonal matrix of eigen values.

11



Graph Convolution

e Given two signals r and b on graph, graph convolution
rvb=ao7(d7r)o (d7b) = ddiag(f, - , )b, (4)

convolution on Fourier domain is element-wise product of their
Fourier transformations
e Graph convolutional layer

goxr=bgydTr. (5)
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rvb=ao7(d7r)o (d7b) = ddiag(f, - , )b, (4)

convolution on Fourier domain is element-wise product of their
Fourier transformations
e Graph convolutional layer

goxr=bgydTr. (5)

While computationally expensive of ® is O(n?). gg(A) can be well
approximated by Chebyshev polynomials

K
ge(/\) ~ Zék Tk(/N\), Tk(r) S 2XTk71(r) - kag(r) (6)
k=1
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Graph Convolution

e Given two signals r and b on graph, graph convolution
rvb=ao7(d7r)o (d7b) = ddiag(f, - , )b, (4)

convolution on Fourier domain is element-wise product of their
Fourier transformations
e Graph convolutional layer

goxr=bgydTr. (5)

While computationally expensive of ® is O(n?). gg(A) can be well
approximated by Chebyshev polynomials

K
ge(/\) ~ Zék Tk(/N\), Tk(r) S 2XTk71(r) - kag(r) (6)
k=1

e Graph Convolution of a signal r with a filter gy approximated by
K

go*r = Z@ka(Z)r. (7)

k=1 12



Proposed Approach: GCN-based Uncertain Opinion Prediction

How to use GCN model to inference opinion?

e How many convoluation layers could be sufficinet?
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Proposed Approach: GCN-based Uncertain Opinion Prediction

How to use GCN model to inference opinion?

e How many convoluation layers could be sufficinet?
Two convolution layer have less risk of overfitting.

e How to model the heterogeneous dependencies among Belief and
Uncertainty?

e heterogeneous structural dependencies among node-level belief and
uncertainty,
e inherent relational dependencies between belief and uncertainty.

13



GCN-based opinion model

e Model higher order shared structural information for B and U.
e Capture their own heterogeneous structural dependencies.
e Loss function: L£(0) = Lg(g) + Lu(s)

A shared graph convolutional F
—_— layer for B and U >e . Sigmoid

——

RelU % Wél)

F' * Sigmoid

sXwg

Graph convolutional layer for U

[
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GCN-based opinion model

e Model higher order shared structural information for B and U.
e Capture their own heterogeneous structural dependencies.
e Loss function: L£(0) = Lg(g) + Lu(s)

A shared graph convolutional F .
—_— layer for B and U >e . Sigmoid
-
RelU "l w®
° o\ WB
—r

F' ® Sigmoid

SN wt

Graph convolutional layer for U

[

Lack of effectively handling the inherent relational dependencies between
B and U 14



VAE-based opinion model

e Transform the combinations (opinions) of B and U to their equivalent
Beta PDF

e Latent probability variables for each node i € V that are sampled from the
Beta PDF: zj ~ Beta(a, 8i), j=1,---,P.
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e Transform the combinations (opinions) of B and U to their equivalent
Beta PDF

e Latent probability variables for each node i € V that are sampled from the
Beta PDF: zj ~ Beta(a, 8i), j=1,---,P.

Encoder: graph structural information encoded by node-level opinions
N P

q(Z|X,A) HHBeta zijlai, Bi),

i=1 j=1

Decoder: use the latent variables Z to recover the structural information in
adjacency matrix

p(A|Z) = H H p(Ai |z z;),

i=1 j=N;

where p(A;; = 11Z) = o([v ™ 4(z)] " [¥ "1 (z))]), ¥ (") is the reverse CDF that
converts a probability to a real value.
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VAE-based opinion model

e Transform the combinations (opinions) of B and U to their equivalent
Beta PDF

e Latent probability variables for each node i € V that are sampled from the
Beta PDF: z;j ~ Beta(a,-,ﬂ,-)7 j=1--- P.

Encoder: graph structural information encoded by node-level opinions
N P

q(Z|X,A) HHBeta zijlai, Bi),

i=1 j=1

Decoder: use the latent variables Z to recover the structural information in
adjacency matrix

P(A|Z) = H H p(Aijlzi zj),
i=1 j=N;
where p(A;; = 11Z) = o([v ™ 4(z)] " [¥ "1 (z))]), ¥ (") is the reverse CDF that
converts a probability to a real value.
Negative variational lower bound L:

£ = —Eqzxa { log p(A|2)] +KL [q(Z|X, A)Hp(Z)] .



GCN-VAE based inference model

A TR orees ’)1@

opinion
p(Z|a, B) (encoder) q(A|Z) (decoder)

model

{ Mapping the combinations of B and U to Beta PDFs E

e Combine GCN-based opinion model and VAE-based opinion model,
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GCN-VAE based inference model

. a y1z)y wi(zl A
A@" GCN-based e 895@9 + 2 ) %:
Beta(' % ’_'B
28%e8) (322%8 8

opinion
p(Z|a, B) (encoder) q(A|Z) (decoder)

model

{ Mapping the combinations of B and U to Beta PDFs E

e Combine GCN-based opinion model and VAE-based opinion model,
e Jointly optimize the loss functions of these two model,

min AE(0) + Lag) + Lugo) (8)
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GCN-VAE based inference model

A@_’ GCN-based a B u-i(z) A
opinion Beta(%gg‘ ggggg s )_,@
model (et Js! eCeCe ]

P(Z|a, B) (encoder) q(A|Z) (decoder)

{ Mapping the combinations of B and U to Beta PDFs E

e Combine GCN-based opinion model and VAE-based opinion model,
e Jointly optimize the loss functions of these two model,

min AE(0) + Lag) + Lugo) (8)

e ‘“reparameterization trick”: Beta distribution not differentiable.
Instead, Kumaraswamy distribution:

d(zla, B) = af(2)* 11— 27)77 (9)
Reparameterization: z ~ (1 — u*/#)Y/* where u ~ Unif(0, 1)

16



Datasets & Experimental Setting

e Road traffic datasets:

Dataset # nodes | # edges | # weeks | # snapshots in total
Epinions 47,676 477,468 - -
D.C. 1,383 1,878 43 3440
Philadelphia 603 708 43 3440
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Datasets & Experimental Setting

e Road traffic datasets:

Dataset # nodes | # edges | # weeks | # snapshots in total
Epinions 47,676 477,468 - -
D.C. 1,383 1,878 43 3440
Philadelphia 603 708 43 3440

e Parameter settings:
e Time window size: T € {3,6,8,11,38},
e Uncertainty mass values: u € {40%,25%, 20%, 15%, 5%}
e Test Ratio: TR € {20%,40%, 60%, 80% }

e Performance metrics:

B-MSE(wy\1.) = NZIEV\IL i — bf| (10)

U- MSE wv\]L N ZIEV\]L up — u; | (11)

e Computation time metric: seconds

17



Comparing Schemes

Comparison Methods:

e Our proposed: GCN-opinion and GCN-AVE-opinion
e GCN-Semi: Semi-supervised node classification

e CSl: combining Probabilistic Soft Logic (PSL) and Markov Random
Fields (MRFs) with SL

e SL: Subjective Logic inference based on Discount and Consensus
operator

18



Results with Epinions Dataset
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Effect of Uncertainty:

e Belief-MSE: GCN-AVE > GCN > CSL > GCN-Semi > SL
e Uncertainty-MSE: GCN-AVE ~ GCN > SL > GCN-Semi ~ CSL
e GCN-AVE and GCN better performance under larger ranges of

uncertainties.
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Results with Epinions Dataset
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e Belief-MSE: GCN-AVE > GCN > GCN-Semi > CSL > SL
e Uncertainty-MSE: GCN-AVE > GCN > GCN-Semi ~ CSL > SL
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Results with Epinions Dataset
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o Belief-MSE: GCN-AVE > GCN > GCN-Semi > CSL > SL
e Uncertainty-MSE: GCN-AVE ~ GCN > SL > GCN-Semi ~ CSL
e GCN-AVE and GCN less sensitivity under different test ratios
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Result on Traffic Dataset
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o Belie-MSE: GCN-AVE > GCN-Semi > GCN > SL > CSL
e Uncertainty-MSE: GCN-AVE > GCN > GCN-Semi ~ CSL > SL
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Computation Time Analysis

Epinions Dataset Philadelphia Washington, D.C
19 === GCN-AVE-opinion csL mmm GCN-AVE-opinion csL
GCN-opinion - SL GCN-opinion Sl

= GCN-Semi 41 mm GCN-semi
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14

w

N

-

IS
o

Log Computation Time (Seconds)
o
Log Computation Time (Seconds)

e Computation order: GCN < CSL < GCN-AVE < GCN-Semi < SL

e SL increases in an exponential order while others(GCN-AVE, GCN,
CSL) increase in a linear order.
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Conclusion

1. GCN-AVE method outperforms among all in both
B-MSE and U-MSE.

2. GCN-AVE method shows less sensitivity over a wide
range of test ratios.

3. GCN-AVE performed better than GCN because GCN-AVE
integrates an VAE-based opinion model to consider the
inherent relational dependencies between beliefs and
uncertainties.

4. GCN-AVE scales almost linearly in proportion to the
network size and is scalable for large-scale network data.
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Thank You!

Questions?

Reach Xujiang Zhao at
xzhao8@albany.edu
UAB 401, 1215 Western Ave, Albany, NY, USA
University at Albany, SUNY
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