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Motivation

• How do we make decisions with

subjective, uncertain opinions?

• Applications

• Trust in social networks

• Opinion diffusion

• Graph summarization.

In a traffic network, how can we predict the

traffic condition of unobserved roads (e.g.,

congested vs. non-congested)?

What if we have so many observations?
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Research Problem & Challenges

Given

• G = (V,E = Y ∪ X, f ), an input network;

• {y(1), · · · , y(T )}, the observations of a vector of input Boolean variables

and ωy = (ωy1 , · · · , ωyM ), the subjective opinions on y.

Predict ωx, the unknown opinion on the vector of target Boolean variables x.

How can we accurately and efficiently predict unknown opinions with a

large, heterogeneous, uncertain network data?
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Contributions

Research goal: Develop a scalable, effective Deep Learning (DL)-based

opinion inference algorithm for a large, heterogeneous, uncertain network

data.

Key Contributions:

1. Combined non-parametric DL-based algorithm with an opinion

formalism of SL to deal with uncertainty of subjective opinions while

maximizing prediction accuracy.

2. Proposed a DL-based opinion inference algorithm characterizing

uncertainty based on a set of heterogeneous belief and uncertainty

in a large-scale network data while maximizing prediction accuracy

with minimum computation time by leveraging GCN and VAE

technology.

3. Validated the proposed DL-based opinion inference algorithm via

extensive simulation experiments using real-world datasets.
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Binomial Opinion in Subjective Logic (SL)

• A binomial opinion is defined in terms of belief, disbelief, and

uncertainty towards a given proposition. An opinion ω is represented

by

ω = (b, d , u, a) (1)

where

• b: belief (e.g., agree)

• d : disbelief (e.g., disagree)

• u: uncertainty (i.e., ignorance, vacuity, or lack of evidence)

• a: a base rate, a prior, general knowledge upon no commitment

and

b + d + u = 1 (2)
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SL’s Binomial Opinion with Beta Distribution

• A binomial opinion follows a Beta PDF, denoted by,

Beta(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1 (3)

where α is the number of positive evidence and β is the number of

negative evidence.

• ω = (α, β), which can be translated to ω = (b, d , u, a).
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Fusion Operators with Uncertain Opinions in SL

• Discount operator, ⊗: Discount trust of an entity one wants to

interact when it does not have any direct interaction with the entity,

e.g., w i
k = w i

j ⊗ w j
k

• Consensus operator, ⊕: Find a consensus between two opinions

where two entities observe a same entity, e.g.,

w i
k = (w i

j ⊗ w j
k)⊕ (w i

h ⊗ wh
k )

[Jøsang, Springer 2016]
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Scalability Issue in Subjective Logic

When a network is large, there are too many paths to consider for fusing

them.

Limitation

SL’s operators are good for fusing two opinions in dyadic relationships;

not scalable for multiple opinions with large network data.
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Collective Subjective Logic (CSL)

A variant of SL, combining Probabilistic Soft Logic (PSL) and Markov

Random Fields (MRFs) with SL

max
ωx,ξ≥0

L(ωx) = max
ωx,ξ≥0

log Prob(y;ωx, ωy)

s.t.ρiEProb(px,y|y;ωx,ωy)[1− ri (px,y)] ≤ ξi , ‖ξ‖β ≤ ε, i = 1, · · · , k

Limitation

The assumption of distribution based on MRFs limits its capability to

deal with, large-scale, heterogeneous network data that may be lossy,

noisy, incomplete, and/or missing.

[Chen, Wang & Cho, Bigdata 2017]
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Why Deep Learning?

Both SL and CSL are:

• not scalable.

• not effectively dealing with heterogeneous data.

How to Solve These Challenge?

Graph Convolutional Network and Variational Autoencoder can

provide solutions for

• dealing with graph

network data

• modeling

heterogeneous

dependency

• processing large-scale

data (i.e., scalability)
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Graph Convolutional Networks (GCN)

What capability can GCN offer?

• node level prediction (regression or classification)

How to use the convolution operator on graph data effectively and

efficiently?

Graph Fourier Transform:

• Euclidean spaces: r =
∑

k≥0 r̂ke ik

• non-Euclidean spaces: r =
∑

k≥0 r̂kφk = φTφr

where L = ΦΛΦT , L is the Graph Laplacian matrix,

Φ = (φ1, · · · ,φn) is the orthonormal eigenvectors and

Λ = diag(λ1, · · · , λn) is the diagonal matrix of eigen values.
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Graph Convolution

• Given two signals r and b on graph, graph convolution

r ? b = ΦT (ΦT r) ◦ (ΦTb) = Φdiag(r̂1, · · · , r̂n)b̂, (4)

convolution on Fourier domain is element-wise product of their

Fourier transformations

• Graph convolutional layer

gθ ? r = ΦgθΦT r. (5)

While computationally expensive of Φ is O(n2). gθ(Λ) can be well

approximated by Chebyshev polynomials

gθ(Λ) ≈
K∑

k=1

θkTk(Λ̃),Tk(r) = 2xTk−1(r)− Tk−2(r) (6)

• Graph Convolution of a signal r with a filter gθ approximated by

gθ ? r ≈
K∑

k=1

θkTk(L̃)r. (7)
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Proposed Approach: GCN-based Uncertain Opinion Prediction

How to use GCN model to inference opinion?

• How many convoluation layers could be sufficinet?

Two convolution layer have less risk of overfitting.

• How to model the heterogeneous dependencies among Belief and

Uncertainty?

• heterogeneous structural dependencies among node-level belief and

uncertainty,

• inherent relational dependencies between belief and uncertainty.
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GCN-based opinion model

• Model higher order shared structural information for B and U.

• Capture their own heterogeneous structural dependencies.

• Loss function: L(θ) = LB(θ) + LU(θ)

Lack of effectively handling the inherent relational dependencies between

B and U
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VAE-based opinion model

• Transform the combinations (opinions) of B and U to their equivalent

Beta PDF

• Latent probability variables for each node i ∈ V that are sampled from the

Beta PDF: zi,j ∼ Beta(αi , βi ), j = 1, · · · ,P.

Encoder: graph structural information encoded by node-level opinions

q(Z|X,A) =
N∏
i=1

P∏
j=1

Beta(zi,j |αi , βi ),

Decoder: use the latent variables Z to recover the structural information in
adjacency matrix A

p(A|Z) =
N∏
i=1

∏
j=Ni

p(Ai,j |zi , zj),

where p(Ai,j = 1|Z) = σ([ψ−1(zi )]T [ψ−1(zj)]), ψ−1(·) is the reverse CDF that

converts a probability to a real value.

Negative variational lower bound L:

L̃ = −Eq(Z|X,A)

[
log p(A|Z)

]
+ KL

[
q(Z|X,A)‖p(Z)

]
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GCN-VAE based inference model

• Combine GCN-based opinion model and VAE-based opinion model,

• Jointly optimize the loss functions of these two model,

min
θ
λL̃(θ) + LB(θ) + LU(θ) (8)

• “reparameterization trick”: Beta distribution not differentiable.

Instead, Kumaraswamy distribution:

q̃(z |α, β) = αβ(z)α−1(1− zα)β−1 (9)

Reparameterization: z ∼ (1− u1/β)1/α, where u ∼ Unif(0, 1)
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Datasets & Experimental Setting

• Road traffic datasets:

Dataset # nodes # edges # weeks # snapshots in total

Epinions 47,676 477,468 - -

D.C. 1,383 1,878 43 3440

Philadelphia 603 708 43 3440

• Parameter settings:

• Time window size: T ∈ {3, 6, 8, 11, 38},
• Uncertainty mass values: u ∈ {40%, 25%, 20%, 15%, 5%}
• Test Ratio: TR ∈ {20%, 40%, 60%, 80%}

• Performance metrics:

B-MSE(ωV\L) =
1

N

∑
i∈V\L

|bi − b?i | (10)

U-MSE(ωV\L) =
1

N

∑
i∈V\L

|ui − u?i | (11)

• Computation time metric: seconds
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Comparing Schemes

Comparison Methods:

• Our proposed: GCN-opinion and GCN-AVE-opinion

• GCN-Semi: Semi-supervised node classification

• CSl: combining Probabilistic Soft Logic (PSL) and Markov Random

Fields (MRFs) with SL

• SL: Subjective Logic inference based on Discount and Consensus

operator
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Results with Epinions Dataset

Effect of Uncertainty:

• Belief-MSE: GCN-AVE > GCN > CSL > GCN-Semi > SL

• Uncertainty-MSE: GCN-AVE ≈ GCN > SL > GCN-Semi ≈ CSL

• GCN-AVE and GCN better performance under larger ranges of

uncertainties.
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Results with Epinions Dataset

Effect of Graph Size:

• Belief-MSE: GCN-AVE > GCN > GCN-Semi > CSL > SL

• Uncertainty-MSE: GCN-AVE > GCN > GCN-Semi ≈ CSL > SL
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Results with Epinions Dataset

Effect of Test Ratio:

• Belief-MSE: GCN-AVE > GCN > GCN-Semi > CSL > SL

• Uncertainty-MSE: GCN-AVE ≈ GCN > SL > GCN-Semi ≈ CSL

• GCN-AVE and GCN less sensitivity under different test ratios
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Result on Traffic Dataset

Effect of Test Ratio:

• Belief-MSE: GCN-AVE > GCN-Semi > GCN > SL > CSL

• Uncertainty-MSE: GCN-AVE > GCN > GCN-Semi ≈ CSL > SL
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Computation Time Analysis

• Computation order: GCN < CSL < GCN-AVE < GCN-Semi < SL

• SL increases in an exponential order while others(GCN-AVE, GCN,

CSL) increase in a linear order.
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Conclusion

1. GCN-AVE method outperforms among all in both

B-MSE and U-MSE.

2. GCN-AVE method shows less sensitivity over a wide

range of test ratios.

3. GCN-AVE performed better than GCN because GCN-AVE

integrates an VAE-based opinion model to consider the

inherent relational dependencies between beliefs and

uncertainties.

4. GCN-AVE scales almost linearly in proportion to the

network size and is scalable for large-scale network data.
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Thank You!

Questions?

Reach Xujiang Zhao at

xzhao8@albany.edu

UAB 401, 1215 Western Ave, Albany, NY, USA

University at Albany, SUNY
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