Deep Learning based Scalable Inference of Uncertain Opinions

University at Albany - SUNY, Virginia Tech

Xujiang Zhao

PhD Student **Department of Computer** Science, University at Albany - SUNY

Feng Chen

Assistant Professor Department of Computer Science, University at Albany - SUNY

Jin-Hee Cho

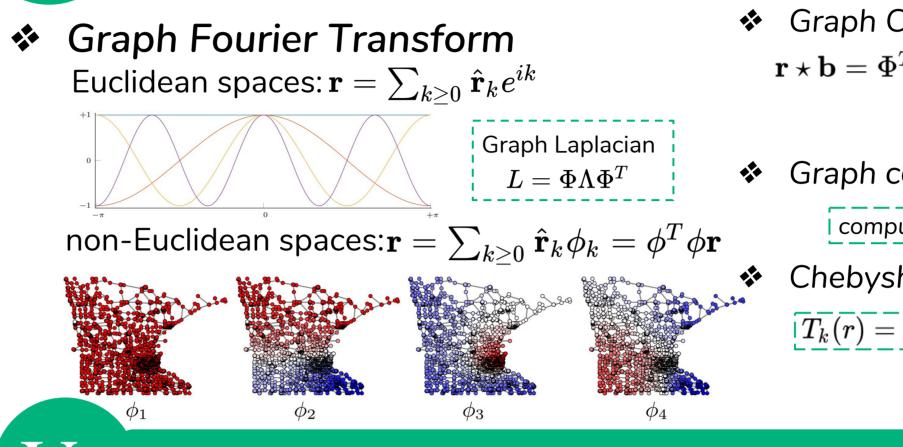
Associate Professor Department of Computer Science, Virginia Tech

I. Research Goal

Motivation: Decision making with subjective, uncertain opinions is an important and challenging problem. Subjective Logic (SL) is one of well-known belief models explicitly dealing with uncertain opinions. However, SL is not scalable for a large-scale network data and incapable to handle heterogeneous opinions.

Goal: Develop a DL-based opinion inference model handles node-level opinions explicitly in network large-scale using graph а convolutional network (GCN) and variational autoencoder (VAE) techniques.

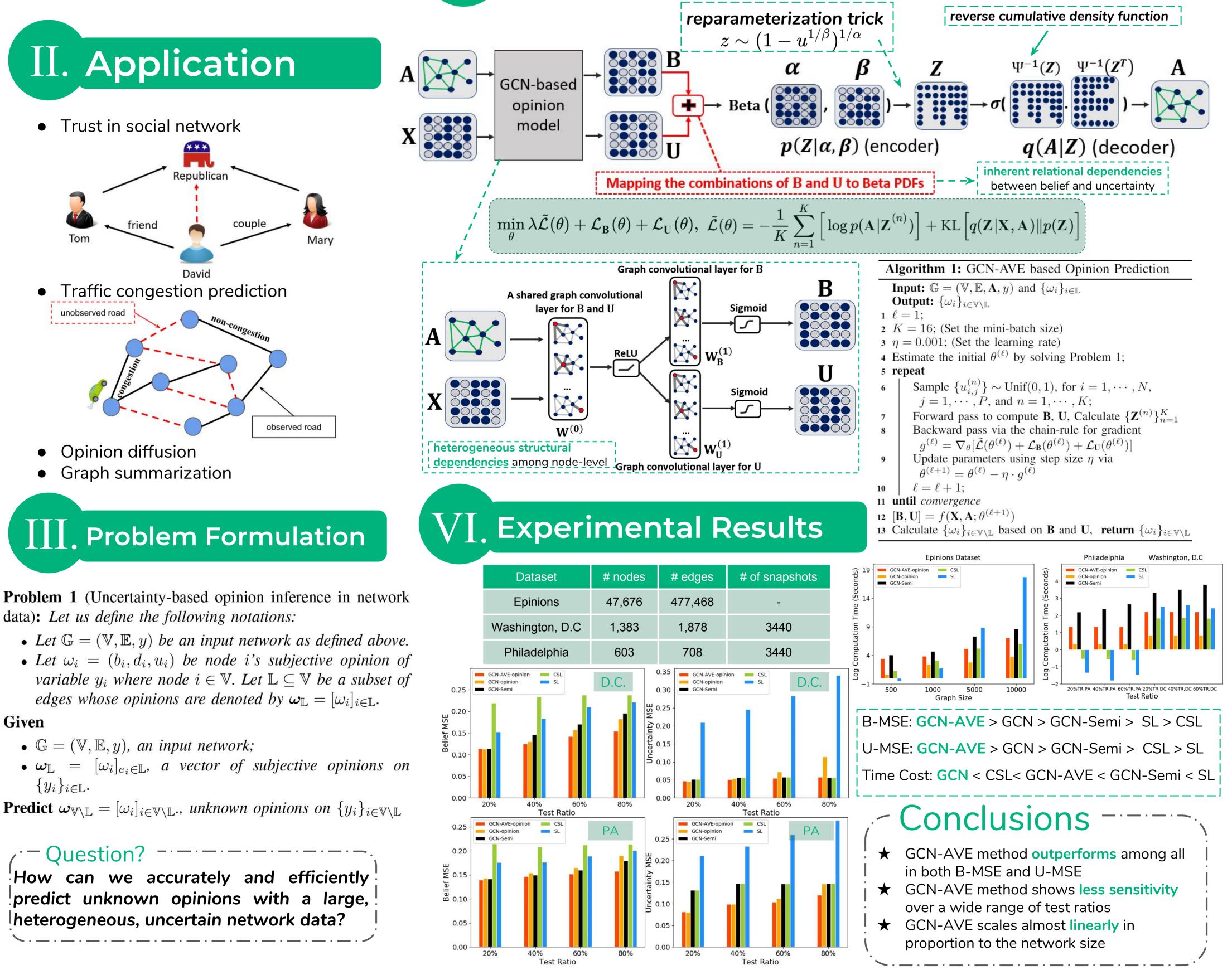
Republican


David

friend

Opinion diffusion

Graph summarization


IV. Graph Convolutional

- Graph Convolution in Fourier domain $\mathbf{r} \star \mathbf{b} = \Phi^T(\Phi^T \mathbf{r}) \circ (\Phi^T \mathbf{b}) = \Phi diag(\hat{r}_1, \cdots, \hat{r}_n) \hat{\mathbf{b}}$ element-wise product
- Graph convolutional layer: $g_{\theta} \star \mathbf{r} = \Phi g_{\theta} \Phi^T \mathbf{r}$ computationally expensive of Φ is $O(n^2)$

Chebyshev polynomials: $g_{ heta}(\Lambda) \approx \sum_{k=1}^{K} \theta_k T_k(\tilde{\Lambda})$ $\overline{T_k(r)} = \overline{2xT_{k-1}(r)} - \overline{T_{k-2}(r)}, \overline{T_0(r)} = \overline{1}, \overline{T_1(r)} = \overline{r}$ $g_{ heta} \star {f r} pprox \sum_{k=1}^{K} heta_k T_k(ilde{L}) {f r}$

Our Solution: GCN-AVE-opinion

• Let $\mathbb{G} = (\mathbb{V}, \mathbb{E}, y)$ be an input network as defined above. • Let $\omega_i = (b_i, d_i, u_i)$ be node i's subjective opinion of variable y_i where node $i \in \mathbb{V}$. Let $\mathbb{L} \subseteq \mathbb{V}$ be a subset of edges whose opinions are denoted by $\boldsymbol{\omega}_{\mathbb{L}} = [\omega_i]_{i \in \mathbb{L}}$.

Given

Tom

unobserved road

- $\mathbb{G} = (\mathbb{V}, \mathbb{E}, y)$, an input network;
- $\omega_{\mathbb{L}} = [\omega_i]_{e_i \in \mathbb{L}}$, a vector of subjective opinions on $\{y_i\}_{i\in\mathbb{L}}.$

Predict $\omega_{\mathbb{V}\setminus\mathbb{L}} = [\omega_i]_{i\in\mathbb{V}\setminus\mathbb{L}}$, unknown opinions on $\{y_i\}_{i\in\mathbb{V}\setminus\mathbb{L}}$

Question? How can we accurately and efficiently predict unknown opinions with a large, heterogeneous, uncertain network data?

VIRGINIA TECH_M UNIVERSITYATALBANY **IEEE ICDM 2018** State University of New York November 17-20, 2018 in Singapore