



# NEC Laboratories America

# SEED: SOUND EVENT EARLY DETECTION VIA EVIDENTIAL UNCERTAINTY

Xujiang Zhao<sup>1</sup>, Xuchao Zhang<sup>2</sup>, Wei Cheng<sup>2</sup>, Wenchao Yu<sup>2</sup>, Yuncong Chen<sup>2</sup>, Haifeng Chen<sup>2</sup>, Feng Chen<sup>1</sup>

<sup>1</sup>The University of Texas at Dallas, <sup>2</sup>NEC Laboratories America

#### **IEEE ICASSP 2022**

# **Motivation**

- Sound is everywhere. Sound event would happen in many environments: domestic environment, plant environment, etc.
- Real-time response after the event is happened.

#### Sound Event Early Detection (SEED)

- Input: stream audio
- Detect each event and reduce the detection delay



Audio stream (Collected by real-time sensors)



#### **Sound Event Early Detection would focus on early detection**

# **Motivation (Example)**

Audio Surveillance: Steam Leak Detection in Thermal Power Plant

Purpose: Detecting the sound waves emanating from the steam leak.

#### Benefits

- Increase operating profits
- Ensure personal safety
- Avoidance of unscheduled outages



Sai et al. Application of Acoustic Techniques in Thermal Power Plants

#### **Impact of Sound Event Early Detection**

# Challenge

I. Overlapping sound event

• It is difficult to detect target event due to overlapping of polyphony sound.



II. Difficult to detect sound event in early stage

Early stage: 1-2 small detection windows (60ms).

III. Real-time inference

Inference time < detection window.</li>

#### **Challenge of Sound event early detection**

# Contribution

- We proposed a Multi-label Evidential neural network to solve SEED and provide a realizable prediction based on uncertainty scores.
- Our model can significantly reduce the detection delay and improve the prediction accuracy.
- The evidence information (include belief, disbelief and uncertainty) can help human being to make better decision.

#### Contribution

## Limitation of existing method



We consider **Evidential Uncertainty** to improve the performance of early sound event detection!

# **Background of Evidential Uncertainty**

We obtain the empirical evidence of the test image from training set (most similar training images):



# **Background of Evidential Uncertainty**

We obtain the empirical evidence of the test image from training set (most similar training images):



# **Background of Evidential Uncertainty**

We obtain the empirical evidence of the test image from training set (most similar training images):



# **Advantage of Evidence-based model**



The uncertainty (opinion) information is important for early detection

# **Evidential Sound Event Early Detection**

Multi-label Evidential neural network (ML-ENN)



**Provide uncertainty information for over lapping sound event (challenge I)** 

# **Evidential Sound Event Early Detection**

Bi-directional Multi-shift inference



- Using both *forward* and *backward* audio information to estimate evidence more accurately
- A balance between delay and accuracy when using *forward* information

### Multi-shift training can overcome the challenge II of small detection window

### Results

 DESED Dataset: composed of audio clips recorded in domestic environments (Focus on 10 classes such as Speech, Running water and Dishes)

Metrics: Delay & Event F1

|                 | Delay (seconds) | Event F1 |
|-----------------|-----------------|----------|
| Conformer       | 0.372           | 0.639    |
| CRNN            | 0.284           | 0.687    |
| Ours (delay)    | 0.247           | 0.670    |
| Ours (balanced) | 0.252           | 0.691    |
| Ours (accuracy) | 0.310           | 0.725    |

Inference time (Challenge III): 5ms << 60ms (detection window)</p>

Our Method can early detect sound events and satisfy the real-time requirement.

#### Results

#### Effect of vacuity threshold

#### 0.69 0.30 0.75 0.7 0.74 0.29 0.68 0.6 0.73 0.28 0.67 Delay Delay E **L** 0.72 0.66 0.71 =-0.4 0.26 0.65 0.70 0.25 0.3 0.69 0.64 0.5 0.6 0.7 0.8 0.9 1.0 2 6 8 0 Vacuity Threshold Backtrack Step

Multi-shift inference

#### A balance between delay and accuracy when using forward information

#### **Future Work**

Consider sequential uncertainty at the inference stage.

Consider multi-label dependency for sound event overlapping.

Apply our model in more real-world datasets.

#### **Sequential Uncertainty and large dataset**

