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ABSTRACT
Automated graph learning has drawnwidespread research attention
due to its great potential to reduce human efforts when dealing with
graph data, among which hyperparameter optimization (HPO) is
one of the mainstream directions and has made promising progress.
However, how to obtain reliable and trustworthy prediction results
with automated graph neural networks (GNN) is still quite underex-
plored. To this end, we investigate automated GNN calibration by
marrying uncertainty estimation to the HPO problem. Specifically,
we propose a hyperparameter uncertainty-induced graph convolu-
tional network (HyperU-GCN)with a bilevel formulation, where the
upper-level problem explicitly reasons uncertainties by developing
a probabilistic hypernetworks through a variational Bayesian lens,
while the lower-level problem learns how the GCN weights respond
to a hyperparameter distribution. By squeezing model uncertainty
into the hyperparameter space, the proposed HyperU-GCN could
achieve calibrated predictions in a similar way to Bayesian model
averaging over hyperparameters. Extensive experimental results
on six public datasets were provided in terms of node classification
accuracy and expected calibration error (ECE), demonstrating the
effectiveness of our approach compared with several state-of-the-
art uncertainty-aware and calibrated GCN methods.
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1 INTRODUCTION
Various graph neural networks (GNN) have been designed to handle
complex graph data among different fields, such as graph convo-
lutional networks (GCN) [17], graph attention networks [35], and
still many more. While all these GNN models have achieved great
success, their prediction results are largely impacted by hyperpa-
rameter choices. For example, the improper network depth and edge
dropout rate [28] choices will lead to an over-smoothing issue [19]
and badly degrade the prediction performance for GNNs. To this
end, the automated graph learning [37], e.g., applying hyperparam-
eter optimization (HPO) on GNNs, has received increasing research
attention in recent years. Along with its rapid development, the
paper focuses on the following question – how to obtain reliable
and trustworthy model predictions in the automated GNN context?

The above research problem is well explored for traditional GNNs
by designing calibration functions [12, 36] or utilizing uncertainty
estimation [10, 42]. On the one hand, Wang et al. [36] proposed a
topology-aware post-hoc calibration method to alleviate the under-
confident predictions for GCN, by using another GCN as the cali-
bration function. On the other hand, Zhao et al. [42] introduced the
evidential deep learning [31] to GCNs, and developed a graph-based
kernel Dirichlet distribution estimation (GKDE-GCN) model to sep-
arately analyze different kinds of uncertainties in graph network
predictions. Moreover, Bayesian approximation could be another
way to calibrate the predictive uncertainty, such as applying the
Monte-Carlo dropout [10] in GCNs. Yet, to date, it is still quite
underexplored to study calibration in automated graph learning.

In this study, we calibrate automated GNNs by marrying uncer-
tainty estimation to the hyperparameter optimization problem [23,
34, 44]. Particularly, we propose a hyperparameter uncertainty-
induced GCN (HyperU-GCN) model by developing a new proba-
bilistic hypernetwork. We provide a bilevel formulation for HyperU-
GCN to jointly reason uncertainties and tune multiple hyperparam-
eters for GCN (see Fig. 1). Notably, the proposed method enables
optimizing a dynamic hyperparameter distribution rather than find-
ing a single configuration, and thus achieves calibrated predictions
in a similar way to Bayesianmodel averaging over hyperparameters.
The contributions of this work are summarized as follows.
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Figure 1: Illustration of the proposed HyperU-GCN model
using a bilevel formulation. The upper-level problem reasons
hyperparameter uncertainty by developing a probabilistic
hypernetwork, while the lower-level learns GCN weights
over the optimized variational hyperparameter distribution.

• A new probabilistic hypernetwork is introduced to explic-
itly model hyperparameter uncertainty through a variational
Bayesian treatment, enabling a tractable way to squeeze
the predictive uncertainty from high-dimensional parameter
space to low-dimensional hyperparameter space.

• We propose a novel automated graph learningmodel, namely
HyperU-GCN, by unifying uncertainty estimation and HPO
with a bilevel formulation. The HyperU-GCN could lead
to robust hypernetworks by learning how GCN weights
respond to a hyperparameter distribution, and also provides
calibrated predictions via Bayesian model averaging.

• The proposed method has shown an effective solution to
provide highly competitive and well-calibrated prediction
results, supported by extensive experimental results on six
public datasets in terms of accuracy and ECE [12].

2 RELATEDWORK
Automated Graph Learning. Graph neural networks achieve
great success in complex relationship modeling, but generally re-
quire heavy human effort in the algorithm design [38]. Automated
graph learning reduces such a dependence by combining the Au-
toML strategies and GNN models. One of the popular direction is
the graph neural architecture search (GNAS) [5, 11, 41, 43], which
explores the optimal network configurations in the pre-defined
search space, i.e., activation functions, pooling methods, number
of layers, and aggregation functions, etc. Another popular auto-
mated direction is the hyperparameter optimization (HPO) [6, 8, 20].
Specifically, random search and grid search [1] could be directly
adopted. Bayesian optimization [4] and hypergradient-based meth-
ods [8] also serve as representative tuning strategies. Recently,
ST-GCN [44] incorporates hypernetworks [23] into GCNs to jointly
optimize hyperparameters and model weights within a population-
based training framework. Despite the promising performance, the
confidence calibration of the model has not been considered.
Confidence Calibration. There has been growing interest in cali-
brating the confidence of the automated decision-making systems.
Well-calibrated models provide the proper expectation of the suc-
cess (i.e., classification probability), resulting in trustworthy and
more interpretable predictions. A variety of confidence calibration
methods are proposed for decades. Histogram binning [39], Isotonic

regression [40], and Platt scaling [27] mainly focus on the binary-
model calibration. The temperature scaling [12] is one of the most
popular methods to calibrate the multiclass methods without sacri-
ficing the predictive performance. Recent work [36] post-processes
the logits of the GCNmodel to obtain the calibrated results. Notably,
uncertainty estimation (UE) [18, 24] also benefits the confidence
calibration by modeling the probability distribution of the predicted
labels. For example,Monte Carlo dropout [33] tackles the problem of
over-fitting (overconfident), yielding better-calibrated predictions.
Yet, calibrating the graph neural networks from the uncertainty
estimation perspective seems to get little research attention so far.

3 METHODOLOGY
3.1 Preliminary
We study the supervised node classification task on the given undi-
rected graph G = (V, E) with 𝑛 nodes over 𝐾 classes, where
V = {𝑣1, . . . , 𝑣𝑛} is the set of nodes and E ⊆ V ×V is a set
of edges between nodes. We denote A ∈ R𝑛×𝑛 as the adjacent ma-
trix for E, X ∈ R𝑛×𝑑 as the node feature matrix, and Y ∈ R𝑛×𝐾 as
the label matrix, where xi ∈ R𝑑 represents the feature of node
𝑣𝑖 and 𝑦𝑖 ∈ {1, . . . , 𝐾} is the corresponding one-hot label. Let
D = {(x, 𝑦)} be the training data, and 𝑓𝜃,ℎ : x,A → 𝑦 be the pre-
diction model with GNNs, parameterized by model parameters 𝜃
and hyperparameters ℎ. We define the loss function as L(ℎ, 𝜃 ) =
E(x,𝑦) ∈D [− log𝑝 (𝑦 |x;A))] where 𝑝 (𝑦 |x;A) = 𝑓𝜃,ℎ (x,A). Follow-
ing the transductive setting [35], we treat the graph structure A
as a fixed quantity and may omit it when no confusion occurs. By
calculating L(ℎ, 𝜃 ) on the training/validation datasets, we have the
training loss LT and validation loss LV , respectively.

Particularly, this study focuses on automated graph learning
based on hyperparameter optimization (HPO), which can be formu-
lated as a bilevel optimization problem [23, 34] as the following:

ℎ∗ = argmin
ℎ

LV (ℎ, 𝜃∗) s.t. 𝜃∗ = argmin
𝜃

LT (ℎ, 𝜃 ), (1)

where the lower-level problem finds optimal model weights by min-
imizing LT , while the upper-level problem automatically tunes
the hyperparameter ℎ to minimize LV upon the minimizers 𝜃∗.
One possible way for solving Eq. (1) is to transform the bilevel
optimization into a single-level problem by substituting a best-
response function 𝜃∗ (ℎ) to replace 𝜃∗. To this end, we leverage
hypernetworks [13, 21, 29] 𝜃 (ℎ), which acts as a mapping function
to approximate 𝜃∗ (ℎ), to further solve the HPO problem as

ℎ∗ = argmin
ℎ

LV (ℎ, 𝜃 (ℎ)) . (2)

We adopt the self-tuning GCN (ST-GCN) [44] to implement 𝜃 (ℎ),
enabling to solve Eq. (2) with hypergradients – 𝜕LV/𝜕ℎ. Given the
weight𝑊 ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 and bias 𝑏 ∈ R𝐷𝑜𝑢𝑡 of one GCN layer, the
hypernetwork 𝜃 (ℎ) maps hyperparameters ℎ to GCN weights by

�̂� (ℎ) =𝑊 +𝑊ℎ ⊙𝑟𝑜𝑤 𝐶𝑤 (ℎ) and 𝑏 (ℎ) = 𝑏 + 𝑏ℎ ⊙𝑟𝑜𝑤 𝐶𝑏 (ℎ), (3)

where𝑊ℎ/𝑏ℎ is the counterpart parameter for𝑊 /𝑏,𝐶𝑤 (ℎ) ∈ R𝐷𝑜𝑢𝑡

and 𝐶𝑏 (ℎ) ∈ R𝐷𝑜𝑢𝑡 are scaled embeddings of ℎ by linear transfor-
mations, ⊙ represents an element-wise multiplication, and ⊙𝑟𝑜𝑤
denotes a row-wise rescaling. By developing hypernetworks, the
model parameters are given by 𝜃 (ℎ) = {�̂� (ℎ), 𝑏 (ℎ)}.
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3.2 Hyperparameter Uncertainty
Bayesian nerual networks (BNN) [22, 25] are widely used for pre-
dictive uncertainty estimation. By applying Bayesian model aver-
aging [7], which marginalizes model parameters by 𝑝 (𝑦 |x,D) =∫
𝑝 (𝑦 |x, 𝜃 )𝑝 (𝜃 |D)𝑑𝜃 , BNNs could yield well-calibrated predictions

by capturing the model (epistemic) uncertainty. However, it is gen-
erally intractable to directly compute the parameter posterior due to
the high-dimensional parameter space and computational complex-
ity. In light of this, we propose a new perspective to investigate pre-
dictive uncertainty over parameters – hyperparameters uncertainty
– by squeezing model uncertainty into a relatively low-dimensional
hyperparameter space.We first formulate the predictive uncertainty
upon both model parameters 𝜃 and hyperparameters ℎ as

𝑝 (𝑦 |x,D) =
∬
𝑝 (𝑦 |x, 𝜃 )𝑝 (𝜃 |ℎ)𝑝 (ℎ |D)𝑑𝜃𝑑ℎ. (4)

Notably, a large hyperparameter uncertainty will lead to a high-
variance of posterior distribution over model parameters, which
further impacts the predictive uncertainty estimation. By marginal-
izing out 𝜃 , we can obtain a clear formulation w.r.t ℎ as

𝑝 (𝑦 |x,D) =
∫
𝑝 (𝑦 |x, ℎ)𝑝 (ℎ |D)𝑑ℎ. (5)

Based on Eq. (5), we define hyperparameter uncertainty as the
mutual information [3, 9, 24] between the model prediction 𝑦 and
hyperparameter ℎ as the following:

I[𝑦,ℎ |x,D]︸         ︷︷         ︸
hyper uncertainty

= H[E𝑝 (ℎ |D) [𝑝 (𝑦 |x, ℎ) ] ]︸                          ︷︷                          ︸
total uncertainty

− E𝑝 (ℎ |D) [H[𝑝 (𝑦 |x, ℎ) ] ]︸                          ︷︷                          ︸
data uncertainty

. (6)

Following [2, 9], we employ variational inference to approximate
the hyperparameter posterior by minimizing 𝐾𝐿(𝑞𝜙 (ℎ) | |𝑝 (ℎ |D)),
where 𝜙 parameterizes the variational distribution 𝑞𝜙 (ℎ) and could
be implemented as neural networks. Given the data log-evidence
as log 𝑃 (Y|X) = ∑

(x,𝑦) ∈D 𝑙𝑜𝑔𝑝 (𝑦 |x), we derive the evidence lower
bound (ELBO) [14, 16] w.r.t. 𝑞𝜙 (ℎ) as

𝑙𝑜𝑔𝑃 (Y|X) ≥ E𝑞𝜙 (ℎ) [log 𝑝 (Y|ℎ,X)] − 𝐾𝐿(𝑞𝜙 (ℎ) | |𝑝 (ℎ)), (7)

where 𝑝 (ℎ) is the given hyperparameter prior (e.g., normal distri-
bution) and 𝑝 (Y|ℎ,X) = ∏

(x,𝑦) ∈D 𝑝 (𝑦 |x, ℎ). To simplify the inte-
gral inside 𝑝 (𝑦 |x, ℎ), we leverage point estimation by formulating
𝑝 (𝜃 |ℎ) as a Dirac delta distribution with the deterministic hypernet-
work 𝜃 (ℎ), where we have 𝑝 (𝑦 |x, ℎ) =

∫
𝑝 (𝑦 |x, 𝜃 )𝛿 (𝜃 − 𝜃 (ℎ))𝑑𝜃 =

𝑝 (𝑦 |x, 𝜃 (ℎ)). Eventually, the variation distribution𝑞𝜙 (ℎ) is obtained
by maximizing the ELBO w.r.t. 𝜙 as

max
𝜙
E𝑞𝜙 (ℎ) [E(x,𝑦) ∈D𝑙𝑜𝑔𝑝 (𝑦 |x, 𝜃 (ℎ))] − 𝐾𝐿(𝑞𝜙 (ℎ) | |𝑝 (ℎ)), (8)

where 𝑞𝜙 (ℎ) and 𝜃 (ℎ) work together as a probabilistic hypernet-
work to reason hyperparameter uncertainties.

3.3 HyperU-GCN: Probabilistic Hypernetworks
with Bilevel Optimization

In this study, we propose a hyperparameter uncertainty-induced
GCN (HyperU-GCN) model by developing the probabilistic hyper-
network (𝑞𝜙 (ℎ), 𝜃 (ℎ)) introduced in Eq. (8). Specifically, the pro-
posed HyperU-GCN instantiates 𝜃 (ℎ) by using ST-GCN layers [28]
in Eq. (3) and formulates the 𝑞𝜙 (ℎ) as a Gaussian distribution by

𝑞𝜙 (ℎ) = N(ℎ, 𝜎𝜙 (ℎ)), (9)

which treats the hyperparameter ℎ as its mean value and employs
𝜙 as a stochastic hyperparameter encoder to learn the variance
centering on each ℎ. By explicitly modeling 𝑞𝜙 (ℎ), we could obtain
new training/validation loss in Eq. (1-2) by rewriting L(𝜙 (ℎ), ℎ) as

L(𝜃 (ℎ), 𝑞𝜙 (ℎ)) = E𝑞𝜙 (ℎ) [E(x,𝑦) ∈D − log 𝑝 (𝑦 |x, 𝜃 (ℎ))]

To compute stochastic gradients for 𝜙 , we utilize the reparameteri-
zation trick [15, 16, 26]. Let ℎ′ ∼ 𝑞𝜙 (ℎ) be a random variable, then
we can obtain it through ℎ′ = ℎ + 𝜎𝜙 ⊙ 𝜖 where 𝜖 ∼ N(0, 1).

Finally, to incorporate uncertainty into HPO, we formulate the
proposed HyperU-GCN as a bilevel optimization problem:

min
𝜙,ℎ

LV (𝑞𝜙 (ℎ), 𝜃 (ℎ)) + 𝐾𝐿(𝑞𝜙 (ℎ) | |𝑝 (ℎ))

s.t. 𝜃 (ℎ) = argmin
𝜃

LT (𝜃 (ℎ), 𝑞𝜙 (ℎ)),
(10)

where the upper-level problem is equivalent to maximize the ELBO
w.r.t 𝑞𝜙 (ℎ) on the validation set, and the lower-level problem mini-
mizes the hypernetwork 𝜃 (ℎ) conditioning on𝑞𝜙 (ℎ) on the training
set. Thus, the bilevel formulation in Eq. (10) unifies two problems –
1) hyperparameter uncertainty estimation and 2) hyperparameter
optimization – within an automated graph learning framework.

Remark. The benefits of introducing the HyperU-GCN model
lie in two folds. First, modeling hyperparameter uncertainty en-
ables a similar way to apply Bayesian model averaging on GCN
weights, which could calibrate model predictions and thus enhance
the reliability. Second, training hypernetworks on a hyperparame-
ter distribution usually leads to a more robust response function
than training on a single ℎ (like ST-GCN [44]), since 𝜃 (ℎ) can better
learn how to respond to different ℎ spreading over 𝑞𝜙 (ℎ).

We adopt an alternating optimization strategy to solve Eq. (10).
During the training, the deterministic hypernetwork 𝜃 (ℎ) will be
first updated by calculating 𝜕

𝜕𝜃
LT with ℎ sampled from the fixed

hyperparameter distribution 𝑞𝜙 (ℎ). Then, the parameter of the
stochastic encoder 𝜙 and hyperparameter ℎ will be optimized with
the most recent 𝜃 (ℎ) by fixing all its weights, on the validation set.
Specifically, we optimize ℎ with hypergradient 𝜕

𝜕ℎ
LV , and update

𝜙 with the following chain rule by
𝜕

𝜕𝜙
LV (𝑞𝜙 (ℎ), 𝜃 (ℎ) ) = E𝜖∼N(0,1) [

𝜕LV
𝜕𝜃 (ℎ)

𝜕𝜃 (ℎ)
𝜕ℎ

𝜕ℎ

𝜕𝜙
+ 𝜕LV

𝜕ℎ

𝜕ℎ

𝜕𝜙
] .

To sum up, we train the proposed HyperU-GCN by updating 𝜃 (ℎ)
and 𝑞𝜙 (ℎ) on training and validation sets, alternatively.

4 EXPERIMENTS
Dataset. The experiment is conducted on six benchmark datasets,
including three citation network datasets [30], such as Cora, Cite-
seer, and Pubmed, and three public datasets provided in [32], namely
Coauthor Physics, Amazon Computer, and Amazon Photo. For the
citation datasets, we use 500 nodes for validation, 1000 nodes for
testing, and the remaining nodes for training, as following [28, 44].
For the other three datasets, we randomly select validation nodes
with the number as 30× of the # of classes. We use 1000 nodes for
testing and the remaining nodes for training, as following [42].

Baselines.We compare HyperU-GCNwith six GCN-basedmeth-
ods, including GCN [17], ST-GCN [44], Drop-GCN [10], CaGCN-
st [36], GKDE-GCN [42]. We tuned all these methods with the rec-
ommended setting provided by their works. Two validation metrics,
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Table 1: Comparison of different methods by test accuracy (Acc%) and the expected calibration error (ECE%)

Methods Cora Citeseer Pubmed Physics Computers Photo

Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE

GCN [17] 86.50 6.08 77.60 6.36 87.00 8.04 96.00 0.55 87.50 1.74 93.70 1.72
ST-GCN [44] 86.00 1.43 79.10 1.68 89.90 2.51 96.70 1.06 93.10 0.61 96.60 0.58

Drop-GCN [10] 86.40 4.97 78.30 5.49 87.00 7.65 95.90 0.63 87.30 1.78 93.90 1.80
CaGCN-st [36] 87.60 4.22 78.20 2.87 87.90 2.46 94.90 1.86 65.60 4.32 85.50 2.51
GKDE-GCN [42] 87.20 2.26 78.10 1.89 87.30 2.24 96.10 0.90 65.90 3.31 86.00 6.04

HyperU-GCN (Ours) 86.70 0.53 79.40 1.22 90.20 0.78 96.20 0.46 93.50 0.30 97.10 0.41

(a) GCN [17] (b) ST-GCN [44] (c) GKDE-GCN [42] (d) HyperU-GCN

Figure 2: Reliability diagrams of different methods on the Cora dataset. A well-calibration tends to perfectly match model
outputs and expected results along the diagonal line.

classification accuracy and expected calibration error (ECE) [12],
were used for performance comparison in the experiment.

Implementation details. Following [28], we optimize five hy-
perparameters including three dropout rates in [0, 0.9], one edge
dropout rate [28] in [0, 0.9], and one weight decay in [10−6, 10−2].
We implemented 𝜃 (ℎ) as the ST-GCN [44] model with 4 layers, each
of which has 128 hidden units, and developed 𝑞𝜙 (ℎ) as a two-layer
MLP network with the hidden dimension as five.

4.1 Calibration Performance
Table 1 summarizes the comparison results between different meth-
ods in node classification and model calibration by testing accuracy
and ECE, respectively. As can be seen, the proposed HyperU-GCN
reports better test accuracy among four out of six datasets and
achieves the lowest ECE compared with the representative meth-
ods such as CaGCN-st [36]. The reliability diagrams in Fig. 2 also
show that our method obtains a clear calibration improvement.
This is mainly due to the benefits of training GCN weights over a
dynamic hyperparameter distribution rather than a fixed configura-
tion. On some datasets, e.g., Cora and Physics, the classification ac-
curacy of HyperU-GCN is slightly lower than the best performance.
One possible reason might be the choice of using a single normal
distribution cannot capture all the hyperparameter properties on
different datasets, which could be improved through modeling the
distribution as a mixture of models, e.g., Gaussian mixture models.

4.2 Model Discussion
The proposed method approximates the hyperparameter posterior
by learning a variational distribution 𝑞𝜙 (ℎ), which could be used
to estimate hyperparameter uncertainties based on Eq. (6). Fig. 3(a)
shows estimation results during the training process. As can be
seen, the data uncertainty dramatically drops at first few epochs.

(a) Uncertainty (b) Convergence
Figure 3: Uncertainty estimation and convergence analysis
on the Physcis dataset.

The hyperparameter uncertainty curve tends to be stable when the
training steps towards the end. This might be due to the nature of
HPO in finding an optimal local region. On the other hand, Fig. 3(b)
discusses the convergence of training probabilistic hypernetworks.
Empirically, our method exhibits a good convergence behavior by
training loss and testing accuracy at each epoch.

5 CONCLUSIONS
In this work, we studied the confidence calibration strategy of
the automated graph learning model. The proposed solution is
to trace the predictive uncertainty induced by hyperparameters
for a predictive reliability enhancement. Using a bilevel optimiza-
tion framework, the proposed HyperU-GCN not only focuses on
node classification but also estimates hyperparameter uncertainties
with a probabilistic hypernetwork. Specifically, we introduced a
stochastic encoder to model the hyperparameter distribution and
developed a deterministic hypernetwork to predict model weights
over the learned distribution. Experimental results on six public
datasets demonstrated that our approach achieves competitive node
classification accuracy and state-of-the-art calibration performance.
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