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ABSTRACT
For example, in machine translation tasks, to achieve bidirectional

translation between two languages, the source corpus is often used

as the target corpus, which involves the training of two models

with opposite directions. The question of which one can adapt most

quickly to a domain shift is of significant importance in many fields.

Specifically, consider an original distribution 𝒑 that changes due

to an unknown intervention, resulting in a modified distribution

𝒑∗
. In aligning 𝒑 with 𝒑∗

, several factors can affect the adaptation

rate, including the causal dependencies between variables in 𝒑. In
real-life scenarios, however, we have to consider the fairness of the

training process, and it is particularly crucial to involve a sensitive

variable (bias) present between a cause and an effect variable. To

explore this scenario, we examine a simple structural causal model

(SCM) with a cause-bias-effect structure, where variable A acts

as a sensitive variable between cause (X) and effect (Y). The two

models respectively exhibit consistent and contrary cause-effect

directions in the cause-bias-effect SCM. After conducting unknown

interventions on variables within the SCM, we can simulate some

kinds of domain shifts for analysis. We then compare the adaptation

speeds of two models across four shift scenarios. Additionally, we

prove the connection between the adaptation speeds of the two

models across all interventions.

CCS CONCEPTS
• Computing methodologies→ Causal reasoning and diagnostics.

KEYWORDS
Adapation speed, Fairness Learning, Causal Graph

ACM Reference Format:
Yujie Lin, Chen Zhao, Minglai Shao, Xujiang Zhao, and Haifeng Chen. 2023.

Adaptation Speed Analysis for Fairness-aware Causal Models. In Proceedings

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00

https://doi.org/10.1145/3583780.3614774

of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23), October 21–25, 2023, Birmingham, United Kingdom.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3583780.3614774

1 INTRODUCTION
The widespread adoption of machine learning systems, particu-

larly in decision-critical domains like criminal sentencing and bank

loans, has raised concerns regarding the fairness implications [7].

AI systems are increasingly employed in sensitive contexts where

they make significant and life-altering decisions [18, 31, 34–37]. A

sensitive feature is defined as an attribute that contains protected

information about individuals or groups within a dataset. This infor-

mationmay encompass characteristics such as race, gender, religion,

or socioeconomic status, which are safeguarded by ethical consid-

erations, legal regulations, or societal norms [3]. Machine learning

models have the potential to inadvertently acquire discriminatory

patterns if sensitive variables exhibit spurious correlations with

the target variable or predictive outcomes [21, 25]. Consequently,

this can lead to biased decisions or unfair predictions that dispro-

portionately impact specific individuals or groups. Therefore, it is

crucial to ensure that these decisions do not reflect discriminatory

behavior towards particular groups or populations [19].

Causal models have been widely applied in machine learning

to address issues related to model fairness. Structural Causal Mod-

els (SCM) [9] provide a means of explaining machine learning

model predictions. Analyzing causal graphs and paths helps under-

stand how the model’s predictions for different groups are formed,

thereby identifying and addressing potential unfair factors. A sim-

ple SCM is the model𝑋 → 𝑌 where X is the cause and Y is the effect,

where it indicates that X determines Y. Modern machine learning

methods encounter surprising failures when the test distribution

differs from the training distribution, which is commonly known as

domain shift [5]. Although many domain adaptation [4, 27, 32] and

domain generalization [15, 20, 38] methods have been proposed

in recent years to mitigate the problem of domain shift, in reality,

we often need to achieve the best possible results and for the con-

venience of training, we still need to retrain the data in the new

domain. In the process of relearning from the original distribution

to the new distribution, the relative speed of adaptation between

the causal model and the anti-causal model may differ. Considering

this SCM (𝑋 → 𝑌 ), the previous work [13] analyzed the adaptation

speed of two models trained in the direction of the causal depen-

dency (i.e., from X to Y) and in the reverse direction of the causal
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Figure 1: Two fairness-aware training models. The causal
model has the same 𝑋 → 𝑌 direction of the cause-bias-effect
SCM, while the anti-causal model keeps the opposite direc-
tion.

dependency (i.e., from Y to X) concerning domain shift. While they

have obtained some promising findings, the analysis of adaptation

speed did not take into account fairness considerations (i.e., sensi-
tive variables), which are crucial in real-life scenarios. There are

currently theoretical and experimental gaps in the analysis of this

aspect, which is precisely what our work aims to address.

To comprehensively analyze the aforementioned issue, it is nec-

essary to consider the convergence speed of the two models under

different domain shifts. To achieve this, we employed interven-

tions on various variables to simulate different domain shifts. In

our analysis, three variables need to be considered, namely: bias

(or sensitive variable) 𝑨, cause 𝑿 , and effect 𝒀 . We will perform

interventions on one or more variables among these three. Specifi-

cally, we consider four scenarios, including interventions on bias

and cause separately, interventions on both bias and cause, and

interventions on the effect.

Having identified the four types of domain shift that we need

to consider, now let us provide a more formal definition. The three

variables (bias: A, cause: X, effect: Y) related to fairness can form

a cause-bias-effect structural causal model (𝐴 → 𝑋 and 𝐴,𝑋 →
𝑌 ). We consider two training models with sensitive variables: one

that has the consistent cause-effect direction of the cause-bias-

effect SCM, and the other that has the opposite direction (Fig. 1).

Domain shift can be described as the transition from the initial joint

distribution 𝒑(𝐴,𝑋,𝑌 ) in the training set to the joint distribution

𝒑∗ (𝐴,𝑋,𝑌 ). During the alignment process of distribution 𝒑 to 𝒑∗,
we extract several samples from𝒑∗ in each round and utilize them to

calculate the loss value. This approach aims to gradually converge

the distribution towards 𝒑∗. Through experimentation and formula

derivation, we were surprised to discover that interventions on bias

causing domain shift only affect the absolute convergence speed

of the two models, but do not impact the relative speed between

the causal model and the anti-causal model. In other words, the

faster adaptation to the new distribution by either the causal model

or the anti-causal model is solely determined by interventions on

other variables. We observed that in only one specific scenario

of domain shift, the two models maintain a consistent relative

speed relationship. When interventions are applied to the cause

variable, the causal model consistently exhibits a speed advantage.

However, when interventions are applied to the effect variable, the

convergence speed of the causal model is faster only under certain

conditions. Otherwise, the anti-causal model has a faster adaptation

speed. In conclusion, our contributions can be summarized as

follows:

• Our work provides a significant contribution to the understand-

ing of the adaptation speed of causal models in scenarios involv-

ing sensitive variables. Our work is the first of its kind and offers

valuable information from the perspective of fairness.

• We considered domain shifts caused by four types of interven-

tions on the data distribution. And we analyze the relationship

between the adaptation speed of two different causal models and

provide insights into this topic, using both synthetic and real

data. The results can guide the development of more efficient

algorithms for learning causal relationships and improving our

understanding of complex systems.

• We conduct theoretical analyses for each of the four cases. The

proof results are consistent with the conclusions drawn from

the experiments, ensuring the rationality and correctness of the

findings.

2 RELATEDWORK
Domain shift, which is also known as dataset shift or covariate

shift, has received considerable attention in recent years [17, 29, 33].

It is a common problem in machine learning where the training

and testing data are drawn from different distributions. This differ-

ence in distribution can cause a significant drop in the performance

of the learned model on the testing data. Domain shift can oc-

cur due to various reasons, such as differences in data collection

procedures, environmental changes, or task-specific variations. To

address domain shift, several approaches have been proposed, in-

cluding re-weighting [30], importance sampling [6], and transfer

learning [22]. These methods aim to either adjust the training data

distribution to match the testing data distribution or to learn a

mapping from the source domain to the target domain. Some deep

learning-based methods, such as deep neural networks, have also

shown promising results in domain adaptation tasks [16]. These

methods learn a representation of the data that is invariant to the

domain shift, enabling the model to generalize to new domains.

Causal fairness aims to prevent machine learning models from

perpetuating or amplifying unfairness inherent in the underlying

data-generating process. Numerous studies have proposed meth-

ods to achieve causal fairness, including the utilization of causal

inference to identify and adjust for confounding variables that may

introduce bias in predictions. For instance, previous work proposed

a method based on counterfactual regression, allowing for the esti-

mation of causal effects between protected attributes (e.g., gender

or race) and the desired outcomes [12]. Other researchers have ad-

vocated for the use of causal graph structures to represent variable

relationships and ensure the model adheres to specific causal consis-

tency conditions [26]. Additionally, the application of causal models

has been explored in reasoning about counterfactual fairness [10].

3 BACKGROUND
In this section, we first provide an overview of Structural Causal

Models (SCM) and interventions that can cause domain shifts. We
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then introduce the formalism used in the analysis, which includes

observations, interventions, models, and adaptation, as presented

in the analysis [13]. And the formalism was first proposed by the

work [1].

3.1 Structual Causal Model (SCM)
Structural causal models (SCMs) are widely used in causal inference

to model the causal relationships among variables. An SCM consists

of a directed acyclic graph (DAG) and a set of structural equations

that define the causal relationships among the variables in the graph

[23, 24, 28]. The structural equation for an endogenous variable 𝑋𝑖
can be expressed as follows:

𝑋𝑖 = 𝑓𝑖 (Pa𝑖 ,𝑈𝑖 ) (1)

where Pa𝑖 denotes the parent set of 𝑋𝑖 in the graph, and 𝑈𝑖 de-

notes the set of exogenous variables that directly affect 𝑋𝑖 . The

function 𝑓𝑖 represents the causal relationship between the parent

variables and 𝑋𝑖 . SCMs are used to estimate causal effects and test

causal hypotheses. By including sensitive variables in the graph

and modeling their causal relationships with other variables, SCMs

can adjust for sensitive and produce unbiased estimates of causal

effects [8].

Interventions on SCMs involve changing the value of a vari-
able to a specified value. This can be represented mathematically

using the do-operator, denoted by do(𝑋 = 𝑥). The do-operator sep-
arates the effect of an intervention from the effect of other variables

in the system. For example, if we want to investigate the effect of

drug treatment on a disease outcome, we might use the do-operator

to set the value of the treatment variable to "treated" and observe

the effect on the outcome variable. In the following narrative, we

will use 𝒑∗ to represent this modified distribution, such as

𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑(𝑎, 𝑥,𝑦 |do(𝑥 = 𝑡)). (2)

By controlling one or several variables in this way, we simulate

domain shifts under different scenarios. And 𝒑∗ is the outcome

after domain shifts.

3.2 Reference and Transfer Distributions
We obtain the initial reference distribution 𝒑 by sampling the triad

(𝐴,𝑋,𝑌 ) from a structural causal model (SCM) constructed as fol-

lows: 𝐴 is a bias, 𝑋 is the cause, and 𝑌 is the effect. The SCM is

defined by the following two equations: 𝐴 → 𝑋 and 𝐴,𝑋 → 𝑌 .

Now, we perturb the distribution 𝒑 by performing interventions on

certain variables to obtain the following transfer distribution 𝒑∗
.

Table 1: Tranfer distributions of different interventions.

Intervention Transfer Distribution

Bias 𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑∗ (𝑎)𝒑(𝑥 |𝑎)𝒑(𝑦 |𝑎, 𝑥)
Cause 𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑(𝑎)𝒑∗ (𝑥)𝒑(𝑦 |𝑎, 𝑥)

Bias and Cause 𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑∗ (𝑎)𝒑∗ (𝑥)𝒑(𝑦 |𝑎, 𝑥)
Effect 𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑(𝑎)𝒑(𝑥 |𝑎)𝒑∗ (𝑦)

If the intervention is on the bias, we sample 𝐴 from a different

marginal distribution, while𝑋 and𝑌 are sampled from the reference

conditional distribution. If the intervention is on the cause, 𝐴 is

Algorithm 1: Adaptation of Causal Model

1 Input:The initialized causal model 𝒑
𝜃
(0)
→

= 𝒑, the

intervened variable 𝒗 (e.g. a,x or y), training epochs T,

learning rate 𝛼 , num of samples in each epoch 𝑲 .

2 Goal:Let initial parameter 𝜃 (0) adapt to the parameter 𝜃∗ of
the transfer distribution 𝒑∗.

3 𝑝∗ (𝑎, 𝑥,𝑦) = 𝑝 (𝑎, 𝑥,𝑦 |𝑑𝑜 (𝑣 = 𝑡)); t represents random
interference on variable v

for t=1 to T do
4 for k=1 to K do
5 Sample 𝜃𝑘 = (𝑎𝑘 , 𝑥𝑘 , 𝑦𝑘 ) ∼ 𝑝∗ (𝑎, 𝑥,𝑦)
6 𝜃𝐾 = {𝜃𝑘 }𝐾𝑘=0

7 Calculate the loss L
causal

in Eqn. 6 with 𝜃𝐾

8 𝜃𝑡 = 𝜃𝑡−1 − 𝛼∇𝜃𝑡−1
L
causal

sampled from the reference marginal distribution, 𝑋 is sampled

from a different marginal distribution independently of 𝐴, and

𝑌 is sampled from the reference conditional distribution. If the

intervention is on both the bias and the cause, 𝐴 is sampled from

a different marginal distribution, 𝑋 is sampled from a different

marginal distribution independently of 𝐴, and 𝑌 is sampled from

the reference conditional distribution. If the intervention is on the

effect, 𝐴 is sampled from the reference marginal distribution, 𝑋

is sampled from the reference conditional distribution, and 𝑌 is

sampled from a different marginal distribution independently of 𝐴

and 𝑋 . Thus, we obtain all the transfer joint distributions that arise

from interventions on some of the variables (Table 1).

3.3 Fairness-aware Models for Training
The role of SCM mentioned earlier is to demonstrate the variables

involved in the actual training of the model, as well as the causal

dependencies between them. The models mentioned in this section

(Fig. 1), which are distinct from the SCM and are used for training,

are referred to as causal models and anti-causal models, respectively.

The causal model and the anti-causal model are constructed with

the variables (A,X,Y). The causal model can be described as

𝒑𝜃→ (𝑎, 𝑥,𝑦) = 𝒑𝜃𝐴 (𝑎)𝒑𝜃𝑋 |𝐴 (𝑥 |𝑎)𝒑𝜃𝑌 |𝐴,𝑋
(𝑦 |𝑎, 𝑥) . (3)

Meanwhile, the anti-causal model can be described as

𝒑𝜃← (𝑎, 𝑥,𝑦) = 𝒑𝜃𝐴 (𝑎)𝒑𝜃𝑌 |𝐴 (𝑦 |𝑎)𝒑𝜃𝑋 |𝐴,𝑌
(𝑥 |𝑎,𝑦), (4)

where the 𝜃→ and 𝜃← represent parameters of the two models

respectively (e.g. 𝜃→ includes 𝜃𝐴 , 𝜃𝑋 |𝐴 , and 𝜃𝑌 |𝐴,𝑋 ).

3.4 Adaptation of Two Models
This section explains the most fundamental issue of this work.

Assuming the initial distribution of two models is both p, and due

to certain factors, the distribution drifts to 𝑝∗, the training process

is to make the models approach the distribution 𝑝∗(Algorithm 8).

When the training is about to start, the training term is 𝑇 := 0. The

two models will be initialized to fit the same reference distribution

p like

𝒑
𝜃
(0)
→

= 𝒑
𝜃
(0)
←

= 𝒑. (5)
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Figure 2: Parameters of the causal model in SGD. In which
the length K of each dimension represents that the variables
A, X, and Y can be divided into K categories.

Then we get samples from the transfer distribution 𝑝∗. Letting these
samples join the training process, the log-likelihood will gradually

increase in every step of stochastic gradient descent (SGD). The

distribution 𝒑𝜃 adapts to 𝑝∗ closest until we get the minimal log-

likelihood loss. Taking the causal model for example, the loss is

L
causal

(𝜃→) =E(𝐴,𝑋,𝑌 )∼𝒑∗
[
− log𝒑𝜃→ (𝐴,𝑋,𝑌 )

]
=E𝒑∗

[
− log𝒑𝜃𝐴 (𝐴)

]
+ E𝒑∗

[
− log𝒑𝜃𝐴|𝑋 (𝐴|𝑋 )

]
+E𝒑∗

[
− log𝒑𝜃𝑌 |𝐴,𝑋

(𝑌 |𝐴,𝑋 )
]
, (6)

where the log-likelihood suboptimality is equal to the KL-divergence

L(𝜃 ) − L(𝜃∗) = 𝐷KL (𝒑∗ | |𝒑𝜃 ). (7)

4 PARAMETERS AND ANALYSIS
4.1 Relavant Inequality
Based on Average Stochastic Gradient Descent (ASGD) [2], the

previous work [13] proves that the average parameter’s
¯𝜃 (𝑇 ) =

1

𝑇

∑𝑇−1

𝑡=0
𝜃 (𝑡 ) suboptimality is upper bounded by

E
[
𝐷KL (𝒑∗ | |𝒑 ¯𝜃 (𝑇 ) )

]
≤ 𝑐
−1∥𝜃 (0) − 𝜃∗∥2 + 𝑐𝐵2

2

√
𝑇

, (8)

where 𝑐 is a small enough constant. This inequality indicates that

the upper bound of the convergence is mainly determined by the

distance 𝛿 := ∥𝜃 (0) − 𝜃∗∥2 between the reference distribution and

the transfer distribution. Specifically, the initial distance of the

causal model and the anti-causal model is respectively denoted by

𝛿
causal

= ∥𝜃 (0)→ −𝜃∗→∥2 and 𝛿anticausal = ∥𝜃
(0)
← −𝜃∗←∥2. And the two

distances are the core basis of the subsequent discussion.

4.2 Parameters in Trainable Models
We assume that the bias 𝐴, the cause 𝑋 , and the effect 𝑌 in the

two models are multiclass variables with 𝐾 classes. The natural

parameter 𝜽 ∈ R𝐾 is generated from the distribution 𝑝 by the

inverse function of the softmax function

𝑝𝑧 =
𝑒𝑠𝑧∑
𝑧′ 𝑒

𝑠𝑧′
. (9)

We set 𝒔 as the trainable parameter in SGD. Taking causal model

for example, the model has parameters 𝒔𝐴 := (𝑠𝑎)𝑎=1...𝐾 , 𝒔𝑋 |𝐴 :=

(𝑠𝑥 |𝑎)𝑎,𝑥=1...𝐾 and 𝒔𝑌 |𝐴,𝑋 := (𝑠𝑦 |𝑎,𝑥 )𝑎,𝑥,𝑦=1...𝐾 . The parameters of

causal model can be represented as 𝜃→ = (𝒔𝐴, 𝒔𝑋 |𝐴, 𝒔𝑌 |𝐴,𝑋 ), while
that’s 𝜃← = (𝒔𝐴, 𝒔𝑌 |𝐴, 𝒔𝑋 |𝐴,𝑌 ) in anti-causal model. We describe

the relationship between the parameter shapes in Fig. 2. Using the

parameter 𝒔, the loss (6) can be written as

L
causal

(𝜃→) = E(𝐴,𝑋,𝑌 )∼𝒑∗
[
− log𝒑𝜃→ (𝐴,𝑋,𝑌 )

]
= E𝒑∗ [−𝑠𝐴 + log

∑︁
𝑎

𝑒𝑠𝑎 − 𝑠𝑋 |𝐴 + log

∑︁
𝑥

𝑒𝑠𝑥 |𝐴

− 𝑠𝑌 |𝐴,𝑋 + log

∑︁
𝑦

𝑒𝑠𝑦 |𝐴,𝑋 ] . (10)

After deriving the new form of the loss, we can use inequality (8) to

further compare the adaptation speeds of the two models. In other

words, we only need to compare the initial distances 𝛿
causal

and

𝛿
anticausal

as described in Section 4.1.

4.3 Adaptation Speeds of Two Models
Based on the introduction in Section 4.1, the adaptation speed of

two models depends on the distance between their initial distri-

bution and the distribution after the change, which can be rep-

resented by the parameter "s" in Section 4.2. Furthermore, com-

paring the convergence speed of two models can be equivalently

expressed as comparing the magnitudes of 𝛿
causal

= ∥𝜃 (0)→ − 𝜃∗→∥2

and 𝛿
anticausal

= ∥𝜃 (0)← − 𝜃∗←∥2, the model with a smaller initial

distance (𝛿) has a faster convergence speed.
Domain Shift by bias A, 𝒔𝐴← 𝒔∗

𝐴
. In this scenario, both the

causal and anti-causal models modify only the same sensitive mar-

ginal 𝒔𝐴 . The initial distance between the two models can be ex-

pressed as

𝛿
causal

= 𝛿
anticausal

= ∥𝒔𝐴 − 𝒔∗𝐴∥
2, (11)

which implies that the two models converge simultaneously.

Domain Shift by causeX,∀𝑎, 𝒔𝑋 |𝑎← 𝒔∗
𝑋
. The conditional 𝒔𝑌 |𝐴,𝑋

remains unchanged while 𝒔𝑌 |𝐴 and 𝒔𝑋 |𝐴,𝑌 of anti-causl model are

modified.The initial distance can be written as

𝛿
causal

=
∑︁
𝑎

∥𝒔𝑋 |𝑎 − 𝒔∗𝑋 ∥
2, (12)

𝛿
anticausal

=
∑︁
𝑎

∥𝒔𝑌 |𝑎 − 𝒔∗𝑌 |𝑎 ∥
2 +

∑︁
𝑎

∑︁
𝑦

∥𝒔𝑋 |𝑎,𝑦 − 𝒔∗𝑋 |𝑎,𝑦 ∥
2 . (13)

We can compare the initial distances of the two models based on the

aforementioned distance and arrive at the following proposition.

Proposition 1. When the intervention is on the cause,

𝛿anticausal ≥ 𝐾𝛿causal , (14)

where the specific proof process will be explained in Appendix B.2.

Domain Shift by both bias A and cause X, 𝒔𝐴← 𝒔∗
𝐴
and

∀𝑎, 𝒔𝑋 |𝑎← 𝒔∗
𝑋
. Compared to the case of intervening on cause X,

the intervention on bias A introduces an additional equal distance

to the initial distance of the two models. Hence, we can obtain a

similar result as before and derive the following inequality:

𝛿
anticausal

≥ 𝛿
causal

, (15)

which will be simply explained in Appendix B.3. It can be observed

that in all three scenarios, the initial distance of the causal model is

consistently smaller than that of the anti-causal model, indicating
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that the causal model adapts to the domain more quickly. However,

if the domain shift is induced by interventions on the effect variable

(Y), interestingly, different conclusions can be drawn.

Domain Shift by effect Y, ∀𝑎, 𝑥, 𝒔𝑌 |𝑎,𝑥← 𝒔∗
𝑌
. The marginal 𝒔𝐴

and the conditional 𝒔𝑋 |𝑎 remain unchanged under this intervention.

On the other hand, the conditional 𝒔𝑌 |𝐴 and 𝒔𝑌 |𝐴,𝑋 in the anti-

causal model change with respect to effect Y. The initial distances

for the two models can be expressed as:

𝛿
causal

= ∥𝒔𝑌 − 𝒔∗𝑌 |𝐴,𝑋 ∥
2, (16)

𝛿
anticausal

=
∑︁
𝑎

∥𝒔𝑌 |𝑎 − 𝒔∗𝑌 ∥
2 +

∑︁
𝑎

∑︁
𝑦

∥𝒔𝑋 |𝑎,𝑦 − 𝒔∗𝑋 |𝑎,𝑦 ∥
2, (17)

where the distance above does not maintain a constant relationship

compared to the other three situations.

Proposition 2. When the intervention is on the effect, there will
be two situations. If the following inequality:

∥𝒔∗𝑌 − 𝒄 ∥
2 < 𝑅2

(18)

is satisfied, 𝛿anticausal ≥ 𝛿causal (proved in Appendix B.4). Let us
illustrate this inequality, where 𝑅2 (see Appendix for specific formula)
is a constant related with 𝒔𝑋 , 𝒔𝑌 |𝐴 , 𝒔𝑋 |𝐴,𝑌 and 𝒔𝑌 |𝐴,𝑋 , and 𝒄 =

(∑𝑥 𝒔𝑌 |𝐴,𝑥 )−𝒔𝑌 |𝐴
𝐾−1

.

The inequality (18) implies that the causal model has a compar-

ative advantage only within a certain range, where the modified

marginal 𝒔𝑌 is sufficiently close to 𝒄 . However, if the distance goes
beyond this range, the anti-causal model will converge faster.

5 EXPERIMENTS
5.1 Data and Settings
Synthetic Data. The first we need is to get the distributions 𝒑 =
𝒑𝜽 (0) which is called prior. Specifically, we get𝒑𝐴 ,𝒑𝑋 |𝐴 and𝒑𝑌 |𝐴,𝑋
from the Dirichlet distribution. The three distributions can be rep-

resented as:

𝒑𝐴 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1𝐾 ),
∀𝑎,𝒑𝑋 |𝑎 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1𝐾 ),

∀𝑎, 𝑥,𝒑𝑌 |𝑎,𝑥 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1𝐾 ),
where 1𝐾 is the all-one vector of K-dimension. We can say that

by using the aforementioned distributions, we ensure that these

three distributions are mutually independent. Now we have thus

obtained an initial joint distribution.

Besides employing synthetic data, we integrated two actual

datasets to establish the initial distribution 𝒑. This involved de-

termining the frequency of each category for each variable. In the

subsequent sections, we will elucidate the identifiable variables A,

X, and Y present in each respective dataset. It is important to note

that we did not directly train the causal model and anti-causal model

using the adult and colored-MNIST datasets, nor did we compare

their convergence speeds in this manner. Instead, all experiments in

this article were conducted employing the two models described in

Section 3.3, with the parameters mentioned in Section 4.2, and the

convergence speeds were compared using the algorithm outlined

in Section 3.4. To differentiate it from the strictly Dirichlet distribu-

tion in synthetic data, we aimed to acquire the initial distribution

𝑝 (𝐴,𝑋,𝑌 ) from real datasets to showcase additional results.

Figure 3: Initialize p(A,X,Y) with Colored-MNIST. The color
pool consists of K RGB colors, and it can probabilistically
alter the colors of the numbers in the image. The image is
also segmented into K categories based on its color, and K
prediction results are generated by CNN and linear layer.

Colored-MNIST.We use MNIST [14] to construct the initial dis-

tribution 𝒑. The sensitive variable (A) is RGB color values, which

consist of K kinds of colors represented by a three-dimensional

vector. We obtain the initial 𝒑𝑐𝑜𝑙𝑜𝑟 from the Dirichlet distribution.

The cause (X) is the images’ features of colored-MNIST, which have

different colors and can be classified into K categories based on

color. For each image, we randomly select a color from 𝒑𝑐𝑜𝑙𝑜𝑟 to
stain it. To avoid having the same distribution 𝒑𝑖𝑚𝑎𝑔𝑒 as 𝒑𝑐𝑜𝑙𝑜𝑟 , we
set the probability of changing the image’s color as 𝒑𝑐ℎ𝑎𝑛𝑔𝑒 (e.g.,
𝒑𝑐ℎ𝑎𝑛𝑔𝑒 = 0.5). Then we need a model to input image features

(X) and get predicted numbers (Y). Since we only need the initial

distribution of Y obtained from X, the model used to obtain the

predicted numbers is not crucial in this analysis. We process the

images with a convolutional neural network (CNN) to predict the

numbers, which represent the effect (Y) of the SCM. Finally, we ob-

tain the initial distribution 𝒑(𝐴,𝑋,𝑌 ) by calculating the frequency

of all categories (Fig.3).

Adult. The results from the MNIST dataset and synthetic data

demonstrate the adaptation speed of multi-categorical variables.

We use the Adult dataset [11] to demonstrate the adaptation speed

of binary variables, where the bias (A) is gender, including male

and female. The initial distribution 𝒑𝑔𝑒𝑛𝑑𝑒𝑟 is also obtained from

the Dirichlet distribution. The cause (X) is the features of people in

the dataset, which are divided into two categories based on gender.

And for each individual, we select a gender from 𝒑𝑔𝑒𝑛𝑑𝑒𝑟 . Similarly

to the Colored-MNIST dataset, we change the initial gender of each

feature to the selected gender with the probability 𝒑𝑐ℎ𝑎𝑛𝑔𝑒 . Using
the modified features, we input them into a 2-layer MLP to obtain

binary predicted labels. The binary labels are recognized as the

effect (Y) in the SCM.
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Table 2: Results on synthetic data. The scatter plots in the first column demonstrate the positive correlation between the
KL-divergence after one-quarter of the training steps, while the second column shows the correlation after three-quarters of the
training steps. Each point on the scatter plots represents a pair (𝑝 (0) , 𝑝∗) in the causal model (blue) or the anti-causal model (red).
The parameters a, b, and 𝑟2 in a scatter plot represent the slope, intercept, and the coefficient of determination, respectively,
in the least squares method. The coefficient of determination measures the linear correlation between the independent and
dependent variables. The curve in the third column shows the relative speeds of the two models. The shaded area indicates the
5th and 95th percentiles of the KL-divergence. The value of 𝐾𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 is set to 20 in this experiment.

5.2 Results
This section demonstrates the adaptation speed of the causal and

anti-causal models using the data from Section 5.1, as well as the

positive relationship between the KL divergence and the initial

parameter distance. And similar results were obtained in both multi-

class and binary classification datasets.

Utilizing 𝐾
synthetic

= 20, 𝐾MNIST = 10, and 𝐾
Adult

= 2, the

outcomes for the three datasets are presented in Table 2, Table 3, and

Table 4, respectively, to showcase the adaptation speed of the causal

and anti-causal models. Additionally, scatter plots are employed

to illustrate the positive correlation between the KL divergence

and the initial parameter distance throughout the training process.

This positive correlation holds significant importance as it validates

Inequality 8, which constitutes the foundation for deriving the

relationship between themodel’s adaptation speed. The results after

one-quarter and three-quarters of the training steps are presented,

while the curves depict the adaptation speed.

Domain Shift by bias A.When intervening on bias A, both the

causal and anti-causal models undergo the same change concerning

the bias, while holding other variables constant. Therefore, both

models exhibit overlapping points on the scatter plots, resulting in

the initial distance 𝛿
causal

= 𝛿
anticausal

and coinciding curves in the

third column. As a result, the convergence speed of both models is
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Table 3: Results on Color-MNIST data. The relative positional relationship between the two types of points in the scatter
plots remains unchanged. Here we set 𝐾𝑀𝑁𝐼𝑆𝑇 = 10. The convergence speed of the two models is consistent with previous
experiments on synthetic data.

the same. This is in line with the observation that interventions on

bias do not change the causal structure of the model, and thus do

not provide any new information that can be used to distinguish

between the two models.

Domain Shift by cause X. In the case of an intervention on the

cause X, the causal model has an advantage over the anti-causal

model, as the points of the causal model cluster towards the bottom

left as compared to the points of the anti-causal model. This rela-

tive positioning reflects the formula 𝛿
causal

< 𝛿
anticausal

, which is

derived in our previous work. This advantage of the causal model is

most pronounced in four intervention scenarios, where the causal

model exhibits a significant advantage in terms of the curves.

Domain Shift by both bias A and cause X.When intervening

on both the bias and the cause, the relative positions of points in the

causal and anti-causal models maintain their relative positions, with

the anti-causal model being on the upper right of the causal model

as a whole. However, the difference in adaptation speed between

the two models shrinks, as the two curves have a short overlap in

the early training steps. This result is somewhat counterintuitive,

as one might expect that intervening on both the bias and the cause

would provide more information that could be used to distinguish

between the two models. However, our results suggest that this is

not always the case, and that the advantage of the causal model

may depend on the specific structure of the model.

Domain Shift by effect Y. When intervening on the effect

Y, the relative positions of points in the causal and anti-causal

models are reversed, with the points of the anti-causal model being
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Table 4: Results on the Adult data. As an experiment using binary variables, we observed that both the causal and anti-causal
models converge faster, similar to the results in the previous experiments. Additionally, the two adaptation curves are closer
when 𝐾𝐴𝑑𝑢𝑙𝑡 = 2. Furthermore, there is less separation between the points of the two models in the scatter plots.

concentrated in the lower-left corner. This advantage of the anti-

causal model corresponds to the proposition that the anti-causal

model is better suited to handle interventions on effect variables.

Although the anti-causal modelmay not always have this advantage,

it typically retains it in most cases. The curves also reflect this

result, as the anti-causal model consistently converges faster when

using the three datasets. Our results suggest that interventions on

effect variables provide valuable information that can be used to

distinguish between the causal and anti-causal models.

In addition to the analysis of multiple categorical variables, we

also conducted a study on dichotomous variables using the Adult

dataset. The results, as presented in Table 4, indicate that both

models exhibit accelerated convergence rates due to the reduced

number of parameters in the training process. Except the bias in-

tervention, the points of both models tend to converge and become

less separated in the scatter plots in other scenarios. Interestingly,

the relationship between the speed of the causal model and the anti-

causal model remains consistent with the results from the previous

two experiments. However, the two curves are significantly closer

together in this study, suggesting that the number of categories

of a variable may only affect the absolute adaptation, but not the

relative speed of the causal model and anti-causal model. Based on

these observations, we can conclude that dichotomous variables

also have a significant impact on the performance of causal models.

By reducing the complexity of the models, the convergence rate

can be accelerated, and the overall accuracy of the models can be
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improved. However, the relationship between the causal model and

the anti-causal model remains unchanged, indicating that these

two models are equally capable of capturing the underlying causal

relationships in the data, irrespective of the type of variable used.

Returning to the example introduced in the abstract of this arti-

cle, suppose that Japanese is a language developed from Chinese,

in which Chinese is a causal factor in the development of Japanese.

In the presence of the sensitive variable of polysemy, training a

Japanese corpus using Chinese data ( training in the causal direction

of the variable) may not necessarily result in faster adaptation to

domain shift compared to training a Chinese corpus using Japanese

data ( training in the anti-causal direction of the variable). This de-

pends primarily on how domain shift occurs, i.e., which variable(s)

undergo intervention.

6 CONCLUSION
This paper aims to explore spurious relationships in structural

causal models (SCMs) that arise due to sensitive factors. We inves-

tigate the adaptation speed of both causal and anti-causal models

in the presence of bias and build upon a theory that explains the

relationship between the initial distance of parameters and the

adaptation speed. Furthermore, it’s a challenge to extend our anal-

ysis to models with more complex structural differences, such as

those with varying numbers of variables and edges. To analyze

the adaptation speed in such cases, an indicator to measure the

difference between the models is necessary. However, finding an

appropriate indicator can be challenging to analyze in the future.
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A PARAMETER
The score 𝒔 ∈ R𝐾 have one additional degree of freedom compared

to the probability [13]. If we add or subtract any multiple of l =
(1, 1, ..., 1) to 𝒔, the softargmax will not change. That means all the

scores {𝒔 + 𝜆l|∀𝜆 ∈ R} are equivalent. Thus we can subtract the

score’s mean and give the scores a good property:

∑
𝑧 𝑠𝑧 = 0.

B DISTANCE ANALYSIS
Due to space limitations, we are unable to provide complete proof,

such as Lemma B.3 and the full details of the distance comparison.

B.1 Related Variables
It’s useful to find the relation of 𝒔𝑦 |𝑎,𝑥 and 𝒔𝑥 |𝑎,𝑦 , because 𝛿causal
and 𝛿

anticausal
are represented by 𝒔.

Definition B.1 (Part-average conditional score vectors). For any
𝑎, 𝑥 or 𝑦, define

𝜃1 (𝑎,𝑦) :=
1

𝐾

∑︁
𝑥

𝑠𝑦 |𝑎,𝑥 , 𝜃2 (𝑎, 𝑥) :=
1

𝐾

∑︁
𝑦

𝑠𝑥 |𝑎,𝑦 . (19)

Definition B.2 (Conditional log-partition function).

𝐴1 (𝑎, 𝑥) = log

∑︁
𝑦

𝑒𝑠𝑦 |𝑎,𝑥 𝐴2 (𝑎) = log

∑︁
𝑥

𝑒𝑠𝑥 |𝑎 (20)

Lemma B.3 (Anticausal conditional score). 𝑠𝑦 |𝑎,𝑥 ,𝑠𝑥 |𝑎,𝑦 , 𝑠𝑥 |𝑎
are all conditional scores in two models. Then we find the relation
between 𝑠𝑦 |𝑎,𝑥 and 𝑠𝑥 |𝑎,𝑦 .

𝑠𝑥 |𝑎,𝑦 = 𝑠𝑦 |𝑎,𝑥 + 𝑠𝑥 |𝑎 −𝐴1 (𝑎, 𝑥) − 𝜃1 (𝑎,𝑦) + 𝛼 (𝑎), (21)

where 𝛼 = 1

𝐾

∑
𝑥 𝐴1 (𝑥).

B.2 Proof for Proposition 1
Given that 𝑠∗

𝑦 |𝑎,𝑥 = 𝑠𝑦 |𝑎,𝑥 , 𝜃
∗
1
= 𝜃1, 𝐴

∗
1
= 𝐴1 and 𝛼∗ = 𝛼 , Lemma B.3

tells us that D-value between the anti-causal conditional 𝒔∗
𝑋 |𝐴,𝑌

and the causal conditional 𝒔∗
𝑋 |𝐴 remains unchanged.

𝑠∗
𝑥 |𝑎,𝑦 − 𝑠

∗
𝑥 |𝑎 = 𝑠𝑦 |𝑎,𝑥 −𝐴1 (𝑎, 𝑥) + 𝛼1 (𝑎) − 𝜃1 (𝑎,𝑦)

= 𝑠𝑥 |𝑎,𝑦 − 𝑠𝑥 |𝑎
=⇒ 𝑠𝑥 |𝑎,𝑦 − 𝑠∗𝑥 |𝑎,𝑦 = 𝑠𝑥 |𝑎 − 𝑠∗𝑥 |𝑎

The distance between models before and after intervention are

𝛿𝑐𝑎𝑢𝑠𝑎𝑙 =
∑︁
𝑎



𝑠𝑋 |𝑎 − 𝑠∗𝑋 

2

=
∑︁
𝑎,𝑥

(𝑠𝑥 |𝑎 − 𝑠∗𝑥 )2

𝛿𝑎𝑛𝑡𝑖𝑐𝑎𝑢𝑠𝑎𝑙 =
∑︁
𝑎




𝑠𝑌 |𝑎 − 𝑠∗𝑌 |𝑎


2

+
∑︁
𝑎,𝑦




𝑠𝑋 |𝑎,𝑦 − 𝑠∗𝑋 |𝑦


2

=
∑︁
𝑎




𝑠𝑌 |𝑎 − 𝑠∗𝑌 |𝑎


2

+
∑︁
𝑎,𝑥,𝑦

(𝑠𝑥 |𝑎 − 𝑠∗𝑥 |𝑎)
2

≥ 0 + 𝐾
∑︁
𝑎,𝑥

(𝑠𝑥 |𝑎 − 𝑠∗𝑥 )2 = 𝐾𝛿𝑐𝑎𝑢𝑠𝑎𝑙 .

B.3 Proof for Equation 15

𝛿𝑐𝑎𝑢𝑠𝑎𝑙 =


𝑠𝐴 − 𝑠∗𝐴

2 +

∑︁
𝑎




𝑠𝑋 |𝑎 − 𝑠∗𝑋 |𝑎


2

𝛿𝑎𝑛𝑡𝑖𝑐𝑎𝑢𝑠𝑎𝑙 =


𝑠𝐴 − 𝑠∗𝐴

2 +

∑︁
𝑎




𝑠𝑌 |𝑎 − 𝑠∗𝑌 |𝑎


2

+
∑︁
𝑎,𝑦




𝑠𝑋 |𝑎,𝑦 − 𝑠∗𝑋 |𝑎,𝑦


2

Using the previous conclusion in Section B.2,∑
𝑎,𝑦




𝑠𝑋 |𝑎,𝑦 − 𝑠∗𝑋 |𝑦


2

= 𝐾
∑
𝑎




𝑠𝑋 |𝑎 − 𝑠∗𝑋 |𝑎


2

≥ ∑
𝑎




𝑠𝑋 |𝑎 − 𝑠∗𝑋 |𝑎


2

,

we can get the relation: 𝛿𝑎𝑛𝑡𝑖𝑐𝑎𝑢𝑠𝑎𝑙 ≥ 𝛿𝑐𝑎𝑢𝑠𝑎𝑙 .

B.4 Proof for Proposition 2

𝛿𝑐𝑎𝑢𝑠𝑎𝑙 =
∑︁
𝑎,𝑥



𝑠𝑌 |𝑥,𝑎 − 𝑠∗𝑌 

2

=
∑︁
𝑎,𝑥,𝑦

(𝑠𝑦 |𝑥,𝑎 − 𝜃1 (𝑎,𝑦))2 +
∑︁
𝑎,𝑥,𝑦

(𝜃1 (𝑎,𝑦) − 𝑠∗𝑦)2

𝛿𝑎𝑛𝑡𝑖𝑐𝑎𝑢𝑠𝑎𝑙 =
∑︁
𝑎



𝑠𝑌 |𝑎 − 𝑠∗𝑌 

2 +
∑︁
𝑎,𝑦




𝑠𝑋 |𝑎,𝑦 − 𝑠∗𝑋 |𝑎,𝑦


2

=
∑︁
𝑎



𝑠𝑌 |𝑎 − 𝑠∗𝑌 

2 +
∑︁
𝑎,𝑥,𝑦

(𝑠𝑥 |𝑎,𝑦 − 𝜃2 (𝑎, 𝑥))2 +
∑︁
𝑎,𝑥,𝑦

(𝜃2 (𝑎, 𝑥) − 𝑠𝑥 )2

𝛿𝑐𝑎𝑢𝑠𝑎𝑙 − 𝛿𝑎𝑛𝑡𝑖𝑐𝑎𝑢𝑠𝑎𝑙 = (𝐾 − 1)∥𝒔∗𝑌 − 𝒄 ∥
2 − (𝐾 − 1)𝑅2,

where 𝑅2 =
(𝐾−1) ∥𝒄 ∥2−𝐾 ∥𝜽1 ∥2+∥𝒔𝑌 |𝐴 ∥2+𝐾 ∥𝜽2−𝒔𝑋 ∥2

𝐾−1
,𝒄 =

𝐾𝜽1−𝒔𝑌 |𝐴
𝐾−1

and𝜃1 =
(𝐾−1)𝒄+𝒔𝑌 |𝐴

𝐾
. When ∥𝒔∗

𝑌
−𝒄 ∥2 < 𝑅2

, 𝛿𝑐𝑎𝑢𝑠𝑎𝑙 ≥ 𝛿𝑎𝑛𝑡𝑖𝑐𝑎𝑢𝑠𝑎𝑙 .
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