
Calibrate Graph Neural Networks under Out-of-Distribution
Nodes via Deep Q-learning

Weili Shi
rhs2rr@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

Xueying Yang
xyang9@scu.edu

Santa Clara University
Santa Clara, California, USA

Xujiang Zhao
xuzhao@nec-labs.com

NEC Laboratories America
Princeton, New Jersey, USA

Haifeng Chen
Haifeng@nec-labs.com

NEC Laboratories America
Princeton, New Jersey, USA

Zhiqiang Tao
zhiqiang.tao@rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Sheng Li
shengli@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

ABSTRACT
Graph neural networks (GNNs) have achieved great success in
dealing with graph-structured data that are prevalent in the real
world. The core of graph neural networks is the message pass-
ing mechanism that aims to generate the embeddings of nodes by
aggregating the neighboring node information. However, recent
work suggests that GNNs also suffer the trustworthiness issues.
Our empirical study shows that the calibration error of the in-
distribution (ID) nodes would be exacerbated if a graph is mixed
with out-of-distribution (OOD) nodes, and we assume that the noisy
information from OOD nodes is the root for the worsened calibra-
tion error. Both previous study and our empirical study suggest that
adjusting the weights of edges could be a promising way to reduce
the adverse impact from the OOD nodes. However, how to precisely
select the desired edges and modify the corresponding weights is
not trivial, since the distribution of OOD nodes is unknown to us.
To tackle this problem, we propose a Graph Edge Re-weighting
via Deep Q-learning (GERDQ) framework to calibrate the graph
neural networks. Our framework aims to explore the potential in-
fluence of the change of the edge weights on target ID nodes by
sampling and traversing the edges in the graph, and we formulate
this process as a Markov Decision Process (MDP). Many existing
GNNs could be seamlessly incorporated into our framework. Ex-
perimental results show that when wrapped with our method, the
existing GNN models can yield lower calibration error under OOD
nodes as well as comparable accuracy compared to the original
ones and other strong baselines. The source code is available at:
https://github.com/DamoSWL/Calibration-GNN-OOD.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies→Markov decision processes.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3614797

KEYWORDS
Graph neural networks; Reinforcement learning; Calibration of
neural networks; Out-of-distribution generalization

ACM Reference Format:
Weili Shi, Xueying Yang, Xujiang Zhao, Haifeng Chen, Zhiqiang Tao, and Sheng
Li. 2023. Calibrate Graph Neural Networks under Out-of-Distribution Nodes
via Deep Q-learning. In Proceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management (CIKM ’23), October 21–25,
2023, Birmingham, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3583780.3614797

1 INTRODUCTION
Graph-structured data are ubiquitous in real world, such as social
networks, infrastructure networks, and chemical molecules. Graph-
structured data can not be easily handled by the traditional neural
networks due to the non-Euclidean characteristics. To deal with
graph-structured data, graph neural networks (GNN) [11, 18, 38]
have been proposed, which aim to model the representative features
of nodes by aggregating the information from neighbors through
message passing. By effectively capturing semantic information
from the graph, GNN can perform a wide range of tasks [10, 13, 14],
such as node classification, link prediction, and graph classification.
Up to now a series of graph neural networks have been proposed,
such as GraphConvolutional Network (GCN) [18], GraphSAGE [11],
and Graph Attention Network [38].

Similar to other types of neural networks, the reliability of GNN’s
predictions is an issue worthy of discussion. The previous study [9]
revealed that complicated neural networks are prone to be over-
confident, leading to an urgent need for calibrated predictions ac-
counting for reliable and secure concerns. Focusing on graph neural
networks, recent work [12, 36, 39] suggests that the prediction re-
sults from graph neural networks are also ill-calibrated, and the
estimated probability yielded by GNN cannot represent true cor-
rectness likelihood of the data.

While the above work has conducted comprehensive investiga-
tion on calibrating graph neural networks, they always assume that
graphs are “perfect” in the sense that node features are sampled
from the same distribution. Yet, the calibration of GNNs would be
getting more challenging when it comes to a more practical setting
— learning on graphs with out-of-distribution nodes [33]. In the
real world, graphs mixed with out-of-distribution (OOD) nodes are
very common. For instance, in social networks, the ordinary people

2270

https://orcid.org/0000-0002-9907-2009
https://orcid.org/00009-0001-9777-79029
https://orcid.org/0000-0003-4950-4018
https://orcid.org/0000-0003-3934-7311
https://orcid.org/0000-0002-5639-7540
https://orcid.org/0000-0003-1205-8632
https://github.com/DamoSWL/Calibration-GNN-OOD
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583780.3614797
https://doi.org/10.1145/3583780.3614797
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614797&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Weili Shi et al.

are usually connected with some strangers such as salesperson or
online scammers. Besides, a plenty of online fraudsters also exist in
financial network and conduct illegal transaction with normal users.
Unlike conventional graph learning, this new problem assumes that
the graph contains not only the interested in-distribution (ID) nodes
but also a large number of out-of-distribution (OOD) nodes. These
OOD nodes do not fall into existing categories of the ID nodes, and
their features are sampled from a different distribution. Previous
work [33] suggests that the presence of OOD nodes has a negative
impact on graph learning, since the noisy information from OOD
nodes would be inevitably propagated to the ID nodes due to the
message passing mechanism. With the presence of OOD nodes, our
empirical experiment illustrates that the calibration error from the
existing GNN models would be worsened.

To alleviate the negative impact from OOD nodes, one plausible
method suggested by previous work [33] is to modify the weights of
their edges connected to the known ID nodes. However, it is not triv-
ial since the distribution of the OOD nodes in the graph is unknown
to us. In this paper, we propose a Graph Edge Re-weighting via
Deep Q-learning (GERDQ) framework to calibrate GNNs for graph
learning with OOD nodes. Without any prior knowledge about the
OOD nodes, our framework aims to explore the potential influence
of the change of the edge weight on the target ID nodes by iteration
of the sampled edges in the graph. To precisely select the appropri-
ate edges and adjust the corresponding weights, we formulate the
iteration of the edges as the Markov Decision Process (MDP) [1],
in which we aim to obtain the optimal graph structure by utilizing
the feedback from the GNN model with modified edge weights in
the graph. In our framework, we adopt the deep Q-learning [29]
to implement the MDP [1], and the feedback from the modified
edge weights on the GNN can be modeled by the deep Q network.
With our refined graph structure, the negative impact from the
OOD nodes can be alleviated, and the calibration error of the GNN
model can be reduced. Note that many existing GNN models can
be incorporated into our framework. We evaluate our framework
on six benchmark datasets and compare the performance of our
framework with other baselines, some of which aim to calibrate
the graph neural network by post-hoc calibration techniques or
uncertainty-aware methods. The experimental results show that
our method can provide reliable prediction results through the opti-
mal graph structure and yield lower calibration errors than those of
the original GNN models and other calibration-oriented methods.
The major contributions of this work are summarized as follows:

• We propose a novel Graph Edge Re-weighting via Deep Q-
learning (GERDQ) framework to solve the calibration issue of
graph learning with OOD nodes. In the GERDQ framework,
we explore the potential influence of the change of edge
weight on the ID nodes through the edge iteration process.
We formulate this process asMarkov Decision Process (MDP)
and implement it by deep Q-learning [29]. Our method can
alleviate the negative impact of OOD nodes and achieve
lower calibration errors under comparable accuracy with the
adjusted edge weights.
• Existing GNN models can be seamlessly incorporated into
our framework to obtain the optimal graph structure. Exten-
sive experiments are conducted on six benchmark datasets

under OOD settings. Results show that our proposed method
could significantly improve the calibration performance with
a comparable ID classification accuracy over the original
GNN models and other calibration-oriented methods.

The rest of paper is arranged as follows. In Sec. 2 we introduce
the related work on GNN calibration and reinforcement learning
on graphs. In Sec. 3 we give the problem formulation and provide
details of related concepts. In Sec. 4 we elaborate on our proposed
framework and present the details of our algorithm. In Sec. 5 we
show our experimental settings and compare our framework with
baselines on benchmarks. At last, Sec. 6 concludes this paper.

2 RELATEDWORK
2.1 Graph Structure Learning
Graph structure learning (GSL) aims to refine the graph structure for
downstream taskswhen the graph is incomplete or noisy [22, 23, 49].
With the optimized graph structure, the quality of graph represen-
tations can be restored. The core of GSL is the structure modeling
that models the edge connectivity by an encoder. According to the
structure modeling techniques [49, 50], the current work can be di-
vided into metric-based approaches [2, 5, 40, 44], probabilistic-based
approaches [6, 16, 28, 45, 47], and direct approaches [7, 15]. Besides,
the latest work proposed SUBLIME [27] to obtain the optimal graph
structure in a self-supervised manner. However, existing work does
not consider the calibration issue of GNN when the graph is noisy.
Our work aims to reduce the calibration error of GNN when the
graph contains OOD nodes. We adopt the deep Q-learning [29] to
refine the graph structure.

2.2 Graph Neural Network Calibration
The gap between the output probability and the ground-truth
correctness likelihood of the predictions would result in the un-
reliability of GNN, which intrigues researchers to develop vari-
ous methods to calibrate GNN. Recent work [39] suggests that
the prediction of GNN is under-confident, and a calibration GNN
model (CaGCN) [39] has been designed to learn the topology-aware
post-hoc calibration function. The calibrated results would be ob-
tained by the transformation imposed on the logits of GNN. HyperU-
GCN [42] aims to model the hyperparameter uncertainty of graph
neural networks with a bilevel formulation, and the prediction re-
sults of HyperU-GCN [42] could be calibrated by narrowing the
uncertainty of hyperparameter. Most recently, researchers have
identified several factors that influence the calibration of graph
neural network through a comprehensive study on the calibration
qualities of GNN [12]. And a novel calibration method named graph
attention temperature scaling (GATS) [12] has been proposed ac-
cordingly. However, none of the aforementioned studies investigate
the calibration issue of GNN under OOD settings. Our method im-
proves the calibration of graph neural networks in the graph OOD
problem setting.

2.3 Reinforcement Learning on Graphs
The rapid development of reinforcement learning (RL) has moti-
vated researchers to develop RL-based methods for various graph

2271

Calibrate Graph Neural Networks under Out-of-Distribution Nodes via Deep Q-learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

A

B

C

Deep Q Network

A

B

C

Buffer

Update

Training nodes

Validation nodes

Other nodes

Sampled edge with edge weight 1

Sampled edge with edge weight r

Batch of sampled
edges with weight 1

Batch of sampled
edges with modified

weight

GNN
Backbone

State
(Edge

Feature)

Transition
Tuple

New Edge
Weight

Action

Figure 1: The illustration of our proposed Graph Edge Re-weighting via DeepQ-learning (GERDQ) framework. In our framework,
we first sample the edges for iteration. We modify the weight of the sampled edges and investigate how the change of the
edge weight affects the performance of ID node classification. We adopt the deep Q network to model the feedback from the
change of the edge weight on the ID nodes, and the Q network is trained by deep Q-learning framework. After training, the Q
network could produce the optimal graph structure. With the adjusted edge weights, the negative impact of OOD nodes can be
alleviated, and the results can be well-calibrated. The other nodes denote the unlabelled ID nodes and OOD nodes.

learning tasks, such as neighborhood detection, information aggre-
gation, and GNN explanation. Actor-Critic [19] algorithm and Deep
Q-network (DQN) [30] are the most commonly used methods in
reinforcement learning on graphs. For instance, Policy-GNN [20]
aims to model the sampling procedure and message passing of
GNNs under a meta-policy framework, which solves the challenge
of determining the aggregation range of nodes in large-scale net-
works with the DQN algorithm. GraphNAS [8] explores all the
possible configurations of graph neural network architectures with
reinforcement learning, by maximizing the expected accuracy of
the generated architectures on a validation dataset. Another line
of work [24, 31] focuses on the explanation of graph neural net-
works through the subgraphs generated by reinforcement learning.
In our work, we adopt the RL framework to obtain the optimal
graph structure and alleviate the negative impact from the OOD
nodes. With the modified edge weight, the results of graph neural
networks can be calibrated implicitly.

2.4 Graph Learning with OOD Nodes
Up to now there are extensive work focusing on the graph learning
with out-of-distribution nodes. These methods can be roughly cate-
gorized into out-of-distribution nodes detection [25, 26, 34, 46] and
out-of-distribution generalization [3, 4, 21, 41]. Specifically, [33]
proposed a new problem for graph learning with OOD nodes. In
the new problem two major tasks are considered: semi-supervised
outlier detection (SSOD) and semi-supervised node classification
(SSNC). The tasks are challenging due to the unknown knowledge

about the OOD nodes and the negative impact of OOD nodes on
ID node classification. To tackle this problem, OODGAT [33] is
proposed to perform both node classification and OOD detection.
The OOD nodes can be identified by entropy estimation, and the
performance on node classification can be improved by lowering
the weight of edges between ID nodes and OOD nodes. However,
OODGAT [33] does not consider the calibration issue of GNN under
OOD setting. Our study aims to deal with the calibration problems
of GNN modes with OOD nodes using reinforcement learning.

3 PRELIMINARY
3.1 Problem Formulation
Unlike the conventional close-world graph learning in which the
nodes are sampled from the same distribution, similar to [33] we
consider a realistic scenario in which the graph consists of both
in-distribution (ID) nodes and out-of-distribution (OOD) nodes. A
graph is denoted by G = {V, E}, in which 𝑉 = {𝑖 |1 ≤ 𝑖 ≤ 𝑁 }
denotes the node set and E ⊆ V ×V denotes the edge set. 𝑁 is the
total number of the nodes in the graph. The X ∈ R𝑁×𝑑 represents
the featurematrix inwhich𝑑 is the dimension of node feature vector.
The binary adjacency matrix is denoted by 𝐴 = {0, 1}𝑁×𝑁 . In our
problem setting, the nodes set consists of both ID nodes and OOD
nodes, i.e., V = V𝐼𝐷 ∩ V𝑂𝑂𝐷 . The feature distribution of OOD
nodes is different from that of ID nodes, i.e., 𝑃 (𝑋𝑂𝑂𝐷) ≠ 𝑃 (𝑋𝐼𝐷).
The label space for the ID node set is 𝑌 = {1, 2, · · · , 𝐾}, while we
assume that the OOD nodes do not belong to any known category

2272

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Weili Shi et al.

of the ID nodes, and their labels are unknown to us. Similar to the
conventional semi-supervised graph learning, the ID nodes can
be divided into labelled ID nodes and unlabelled ID nodesV𝐼𝐷 =

V𝑙
𝐼𝐷
∩V𝑢𝑙

𝐼𝐷
. The goal of our problem is to obtain the a new graph

structure 𝐴′ = (0, 1]𝑁×𝑁 and learn a classifier 𝑓 : 𝑋,𝐴 → �̃� that
not only achieves comparable performance on node classification
but also yields well-calibrated prediction results with the presence
of OOD nodes.

3.2 Expected Calibration Error
The expected calibration error (ECE) proposed by previous work [9]
is a statistical measurement of the gap between the prediction prob-
ability and the ground-truth correctness likelihood from the output
of the graph neural networks. In practice, the predictions are re-
grouped into𝑀 equally spaced confidence intervals (𝐵1, 𝐵2, · · · , 𝐵𝑀)
with 𝐵𝑚 = {𝑖 ∈ V|𝑚−1

𝑀
< 𝑝𝑖 ≤ 𝑚

𝑀
}, where 𝑝𝑖 is the confidence for

node 𝑖 . The expected calibrated error (ECE) can be defined as:

ECE =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
|V| |acc(𝐵𝑚) − conf(𝐵𝑚) |, (1)

where
acc(𝐵𝑚) =

1
|𝐵𝑚 |

∑︁
𝑖∈𝐵𝑚

1(𝑦𝑖 = 𝑦𝑖),

conf(𝐵𝑚) =
1
|𝐵𝑚 |

∑︁
𝑖∈𝐵𝑚

𝑝𝑖 .

(2)

We adopt the expected calibration error as our major metric in the
experiments.

3.3 Markov Decision Process
Markov Decision Process (MDP) [1] is a probability framework
which is used to model a decision-making process, involving the
interaction of an agent and an environment. A typical MDP can
be formulated asM = {S,A, 𝑃𝜋 , 𝑟 , 𝛾}, where S is the state space,
A is the action space, 𝑃𝜋 (𝑠′ |𝑠, 𝑎) : S × A → S is the state-action
transition probability, 𝑟 is the reward function, and 𝛾 ∈ (0, 1) is
the discount factor. In MDP, the agent takes action 𝑎𝑡 according
to the current state 𝑠𝑡 of the environment. The agent receives the
reward 𝑟𝑡 from the environment, and the current state 𝑠𝑡 would
be transited to next state 𝑠𝑡+1 based on the transition probability.
The goal of MDP is to learn the policy 𝜋 (𝑎 |𝑠) that can maximize
the discounted cumulative reward 𝐽𝜋 =

∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡). To tackle
the MDP problem, deep Q learning [29, 37] models the Q function
derived from Bellman equation [35] using deep neural networks,

𝑄 (𝑠, 𝑎) = E𝑠′∼S [𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′)] . (3)

And the policy is obtained by 𝑎 = argmax𝑎𝑄 (𝑠, 𝑎). The advantage
of deep Q-learning [29] is that it can handle the state with high
dimension. The experience replay is introduced to remove data
correlation. Besides, another work [37] introduced the double Q
network (DQN) to ensure the stability and fast convergence of the
training.

4 METHODOLOGY
Figure 1 illustrates the proposed GERDQ framework. Our frame-
work consists of two major components: GNN backbone and deep

Training nodes

Validation nodes

Other nodes

Sampled edges

𝑡 = 𝑡0 𝑡 = 𝑡1

Figure 2: The illustration of iteration of the sampled edges
from 𝑡0 to 𝑡1. We show a batch of one edge for brevity. The
other nodes denote the unlabelled ID nodes and OOD nodes.

Training nodes

Validation nodes

Other nodes

Sampled edge

Figure 3: For the sampled edge, the average accuracy of the
adjacent labelled nodes (denoted by red and yellow) would
be adopted as the reward signal. The other nodes denote the
unlabelled ID nodes and OOD nodes.

Algorithm 1 Algorithm for obtaining new edge set for training
Input: training nodesV𝑡𝑟𝑎𝑖𝑛 , validation nodesV𝑣𝑎𝑙 , hop value 𝑘 ,

adjacent matrix 𝐴.
Output: k-hop neighbors edges E𝑘 of training nodes and valida-

tion nodes.
E𝑘 ← {}.
for node 𝑣𝑖 inV𝑡𝑟𝑎𝑖𝑛 ∪V𝑣𝑎𝑙 do

obtain k-hop neighbor edge E𝑘
𝑖
for node 𝑣𝑖 using Algo. 2.

E𝑘 = E𝑘 ∪ E𝑘
𝑖
.

end for

Q network. In our framework, we first formulate the edge iteration
process as a Markov Decision Process (MDP) and then evaluate
the potential influence of the change of edge weight on the tar-
get ID nodes by the feedback from the GNN backbone. Similar to
deep Q-learning, we adopt a deep neural network to model the Q
function. By training on the sampled edges, our framework could
effectively modify the weights of the desired edges and yield the
optimal graph structure to reduce the negative impact from the
OOD nodes. Consequently, the calibration error of GNN outputs
could be reduced.

This section is arranged as follows. We first introduce our edge
iteration process and then present the definitions of state, action,
reward associated with this process. At last, we elaborate on the
details of algorithms used in our framework.

4.1 Edge Iteration Process

2273

Calibrate Graph Neural Networks under Out-of-Distribution Nodes via Deep Q-learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Algorithm 2 Algorithm for obtaining k-hop neighbor edges for a
node
Input: adjacent matrix 𝐴, the node 𝑣𝑖 , graph edge set E.
Output: k-hop neighbor edges for the node 𝑣𝑖 .
E𝑘 ← {}.
if 𝑘 ≥ 0 then
obtain the 1-hop neighbor nodes N(𝑣𝑖) for node 𝑣𝑖 .
for node 𝑣 𝑗 ∈ N (𝑣𝑖) do
E𝑘 ← E𝑘 ∪ {𝑒𝑖 𝑗 }.
obtain (k-1)-hop neighbor edges E𝑘−1 for the node 𝑣 𝑗 .
E𝑘 ← E𝑘 ∪ E𝑘−1.

end for
end if

To sample the edges for training, we first choose the nodes with
labels (i.e., training nodes and validation nodes), and form new edge
set E𝑘 by gathering the k-hop edges within each labelled node. The
details are illustrated in Algorithm 1. At each timestep 𝑡 during the
training, we sample a batch of edges from the new edge set and
modify their weights for evaluation of the influence of the adjusted
weights on the target ID nodes, as shown in Figure 2. In order to
enable our method smartly select the desired edges and change the
corresponding weights, we formulate our edge iteration process as
a Markov Decision Process, and we provide the definitions of the
state, action and reward as follows.

State. We define our state 𝑠 ∈ S as the edge features which is
adopted as the average of the features of the connecting nodes.

Action. For each sampled edge, the action 𝑎 ∈ {0, 1} defined on
the edge is the binary value that determines whether edge weight
is modified or not. The action on the edge can be formulated as

𝑎𝑖 𝑗 =

{
1 if 𝑎 = 1,
𝑟 if 𝑎 = 0,

(4)

where 𝑟 ∈ (0, 1) is assigned edge weight if action 𝑎 = 0 is taken for
the edge and 𝑎𝑖 𝑗 denotes the weight of edge between node 𝑖 and
node 𝑗 .

Reward. In our framework, the reward 𝑟 is designed to reflect
the influence of the change of edge weight on the target ID nodes
and guide the training of the deep Q network to achieve the optimal
graph structure. To ensure that the modified edge weights do not
lower the performance of ID node classification, we formulate our
reward signals as follows:

𝑟 =
1
𝑁

𝑁∑︁
𝑖=1

1(𝑦𝑖 = 𝑦𝑖), (5)

where 𝑁 is the number of adjacent nodes of the sampled edge. 𝑦𝑖
and𝑦𝑖 denote the predicted label and ground-truth label of the node,
respectively. As shown in Figure 3, since the change of weight of
the sampled edge has equivalent impact on the adjacent nodes, the
average accuracy of these in-distribution labelled nodes would be
adopted as the reward signal. Our designed reward signal could
guide the training of the deep Q network to obtain the optimal
graph structure. With the refined edge weight, the GNN backbone
can achieve the comparable performance for ID nodes, and the

Algorithm 3 Algorithm for our proposed GERDQ framework

Input: graph G = (V, E), GNN backbone 𝑓 , hop value 𝑘 = 2,
node features matrix X, node labels Y, training mask, validation
mask, replay buffer 𝐵, epsilon probability 𝜖 , number of episode
𝑃 , training steps 𝑇 , Q network 𝑞.
form the new edge set for iteration and corresponding edges
features with hop value 𝑘 by Algo 1.
obtain the initial adjacent matrix 𝐴 from graph G.
for 𝑝 = 0, 1, 2, 3, ..., 𝑃 do

initialize and train GNN model 𝑓 with the adjacent matrix 𝐴.
for 𝑡 = 0, 1, 2, 3, ...,𝑇 do

sample a batch of edges and form the state 𝑠𝑡 .
map the state into the action with the Q network 𝑞. Choose
the action 𝑎𝑡 for each edge according to the 𝜖-greedy algo-
rithm.
update the adjacent matrix 𝐴 with new edge weights by
Eq. 4.
calculate the reward 𝑟𝑡 from the adjacent in-distribution
labelled nodes via Eq. (5).
sample next batch of edges as the next state 𝑠𝑡+1.
store the transition tuple 𝐷 = (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡) into replay
buffer 𝐵.
randomly sample the data from replay buffer 𝐵 and train
the Q network 𝑞 by minimizing the loss function 6.

end for
update the weight of each edge by Q network and form the
new adjacent matrix 𝐴′.
update the adjacent matrix 𝐴 = 𝐴′.

end for

calibration error can be reduced due to the less noisy information
propagated to ID nodes.

4.2 Algorithm Details
The details of our framework are illustrated in Algorithm 3. We
adopt the deep Q-learning [29, 37] method to train our Q network.
The first step is to form the new edge set for iteration purpose. To
ensure there are valid labelled ID nodes adjacent to the sampled
edges and the reward signal is meaningful, we typically choose the
edges 2-hop away from the labelled ID nodes. The state 𝑠 is adopted
as the edge features, and action 𝑎 is chosen for the sampled edge
according to the 𝜖-greedy algorithm. The modified edge weight
is given by Eq. (4). Then the reward 𝑟 is obtained by Eq. (5). The
transition tuple (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡) at each timestep 𝑡 is formed and
stored in replay buffer. During the training, the batch of transition
tuple is randomly sampled from the replay buffer to train the Q
network via the loss function:

L(\) = (𝑟 (𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎))2 . (6)

4.3 Discussions
In [12], the authors revealed five factors that may influence the cal-
ibration of the results from GNN model. One of the most important
factor is the node similarity in the graph. [12] has demonstrated that
higher node similarity yield lower calibration error and vice versa.
In our problem setting, the presence of OOD nodes undermines the

2274

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Weili Shi et al.

Table 1: The statistics of datasets

Dataset ID classes OOD classes #Nodes #Edges #Features #Classes

Cora [0 - 3] [4 - 6] 2,708 10,556 1,433 7
Citeseer [0 - 2] [3 - 5] 3,327 9,104 3,703 6
PubMed [0,1] [2] 19,717 88,648 500 3

Amazon-Photo [0 - 3] [4 - 7] 7,650 238,162 745 8
Amazon-Computers [0 - 4] [5 - 9] 13,752 491,722 767 10
Coauthor-Physics [0,1,2] [3,4] 34,493 495,924 8,415 5

original node homophily and thus increases the calibration error for
the GNN model. By lowering the weights of corresponding edges,
we can prevent the noisy information propagated to the ID nodes
and restore the original node similarity of the graph by making the
OOD nodes less visible to the ID nodes. With the optimal graph
structure obtained by our framework, the GNN model can achieve
lower calibration errors and comparable accuracy for the graph
with OOD nodes.

5 EXPERIMENTS
In this section, we mainly investigate the performance of our frame-
work on the benchmark datasets and compare it with baselines.
First, the experimental settings for graph learning with OOD nodes
are introduced. We provide the performance of our proposed frame-
work as well as the baseline methods. To visualize the calibration
errors, the reliability diagrams of our framework and baselines
are also provided. In the ablation study, we compare the results of
our methods against that obtained by manually adjusting the edge
weights given the prior knowledge of OOD node distribution.

5.1 Experimental Settings
Datasets. We evaluate our framework on six graph-structured
datasets, namely Cora, Citeseer, PubMed [43], Amazon-Photo, Amazon-
Computers, and Coauthor-Physics [32]. We basically adhere to the
train/validation/test splits provided by previous work [32, 43]. Fur-
thermore, to formulate scenario of the graph with OOD nodes,
we manually split nodes of certain classes as out-of-distribution
nodes, and the rest is regarded as in-distribution nodes. For instance,
Cora [43] has 7 classes. Nodes from the first four classes are treated
as in-distribution nodes while the others are OOD nodes. According
to this split, the OOD nodes in the graph are masked out, and none
of them would be used for training, validation, and testing. The
details of the datasets are illustrated in Table 1.

Baselines. We compare our framework with six baselines, in-
cluding GCN [18], HyperU-GCN [42], ST-GCN [48], CaGCN [39],
GKDE-GCN [46], and OODGAT [33]. Among them, ST-GCN [48]
focuses on automated graph learning which can obtain the optimal
hyperparameters through joint optimization of model weights and
hyperparameters. HyperU-GCN [42] can calibrate the prediction
results implicitly by narrowing down the uncertainty of hyperpa-
rameters. CaGCN [39] calibrates the confidence of the GNN by the
post-hoc method to ensure the reliability of the prediction. With
an estimation of different types of uncertainty, GKDE-GCN [46]
is able to perform misclassification detection and OOD detection.
OODGAT [33] is the first work that proposed graph learning with
the OOD nodes. It performs both ID node classification and OOD

node detection by identifying the entropy difference between ID
nodes and OOD nodes. And the edge weight is adjusted accordingly
to reduce the negative effect from OOD nodes. In our experiment,
we only perform the ID node classification and compare the ex-
pected calibration error (ECE) under the comparable ID classifica-
tion accuracy.

Metrics. The metrics we adopt in our experiments are accuracy
and expected calibration error (ECE) [9]. ECE measures the gap
between output probability and the ground-truth correctness likeli-
hood of the data. A smaller value of ECE means the more reliable
the prediction.

Implementation details. In our method, we adopt GCN [18]
and HyperU-GCN [42] as our GNN backbone. For the training we
follow the same setting of the GCN [18] and HyperU-GCN [42]. For
HyperU-GCN, three dropout rates are in [0, 0.9], one edge dropout
rate in [0, 0.9], and one weight decay in [10−6, 10−2]. The hyper-
networks (𝑞𝜙 (ℎ), \ (ℎ)) are implemented as a MLP with hidden
dimension of 5 and 128, respectively. In our framework, the deep Q
network is implemented as a two-layer MLPwith hidden unit of 128.
The training of Q network is optimized by Adam [17] algorithm
with the learning rate of 5e-4. The episode steps P is set to 100.
The hop values 𝑘 is set to 2. The epsilon probability 𝜖 is initialized
as 0.9, and the discount factor 𝛾 is set to 0.95. The updated edge
weight 𝑟 is set to 0.5. All the codes are implemented in Pytorch,
and the experiment is running on NVIDIA RTX A5000. All the
experiments are repeated 10 times, and the average values with
standard deviations are reported.

5.2 Experimental Results
Table 2 and Table 3 summarize the experimental results of our
framework and other baselines on the six benchmark datasets. The
results show that baseline GNN models such as GCN [18] and ST-
GCN [48] yield large calibration errors with the presence of OOD
nodes, especially on Cora, Citeseer and PubMed [43]. Since these
models treat the ID nodes and OOD nodes equally, the negative
impact from the OOD nodes can not be reduced.

For the other baseline methods that aim to calibrate the predic-
tion of graph neural network, their performance varies substan-
tially on various datasets in our problem setting. HyperU-GCN [42]
achieves worse calibration errors on Citeseer and PubMed [43] than
those on other benchmarks. The performance of CaGCN-st [39]
on the benchmark is also not satisfactory. For instance, it achieves
9.08% on Citeseer [43]. GKDE-GCN [46] can achieve the best ECE
value on Citeseer, which is 3.74% on average. However, on the
other datasets, it fails to provide a reliable prediction. For instance,
on Cora [43], the average ECE GKDE-GCN is 9.88%, which is the

2275

Calibrate Graph Neural Networks under Out-of-Distribution Nodes via Deep Q-learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 2: Comparison between our proposed GERDQ framework and other baseline methods in terms of test accuracy (Acc%)
and expected calibration error (ECE%) on Cora, Citeseer and PubMed datasets. The experiments are repeated 10 times, and the
average results with standard deviations are reported. The bold represents the best results.

Methods Cora Citeseer PubMed

Acc ECE Acc ECE Acc ECE

GCN [18] 86.87 ± 0.47 6.98 ± 0.25 71.20 ± 1.25 4.27 ± 0.63 92.28 ± 0.13 4.95 ± 0.25

ST-GCN [48] 81.71 ± 3.34 6.42 ± 1.30 62.80 ± 8.75 17.26 ± 4.86 90.99 ± 4.08 9.04 ± 2.91

HyperU-GCN [42] 85.19 ± 1.10 2.90 ± 4.09 70.86 ± 2.22 9.40 ± 3.47 92.98 ± 0.26 5.22 ± 1.43

CaGCN-st [39] 85.34 ± 0.43 4.54 ± 0.22 72.52 ± 0.84 9.08 ± 4.87 92.29 ± 0.23 3.20 ± 0.33

GKDE-GCN [46] 85.38 ± 0.63 9.88 ± 0.39 67.09 ± 1.22 3.74 ± 0.57 91.94 ± 0.26 4.29 ± 0.40

OODGAT [33] 75.46 ± 1.78 4.77 ±2.28 70.08 ± 2.98 12.45 ± 2.36 74.07 ± 1.19 9.35 ± 1.77

GERDQ+GCN (Ours) 85.01 ± 0.30 1.65 ± 0.19 70.90 ± 0.79 3.98 ± 0.54 93.25 ± 0.48 2.22 ± 0.54

GERDQ+HyperU (Ours) 85.22 ± 0.78 1.28 ± 0.36 71.81± 1.53 3.94 ± 1.28 93.14 ± 0.56 2.59 ± 1.46

Table 3: Comparison between our proposed method and other baselines in terms of node classification accuracy (Acc%) and
expected calibration error (ECE%) on Amazon-Photo, Amazon-Computers and Coauthor-Physics. The experiments are repeated
10 times, and the average results with standard deviations are reported. The bold represents the best results.

Methods Amazon-Photo Amazon-Computers Coauthor-Physics

Acc ECE Acc ECE Acc ECE

GCN [18] 91.11± 1.37 3.81 ± 0.64 83.80 ± 1.91 5.17 ± 1.13 93.94 ± 1.25 4.02 ± 0.94

ST-GCN [48] 92.93 ± 0.62 2.60 ± 0.32 89.66 ± 1.48 3.27 ± 0.26 96.92 ± 0.54 2.23 ± 0.40

HyperU-GCN [42] 91.56 ± 1.36 2.36 ± 0.89 89.37 ± 1.77 2.38 ± 0.56 97.06 ± 0.24 1.25 ± 0.18

GKDE-GCN [46] 93.35 ± 0.75 5.17 ± 0.65 88.29 ± 1.77 6.24 ± 0.89 97.34 ± 0.29 4.73 ± 0.31

OODGAT [33] 91.66 ± 0.52 5.39 ±1.98 88.87 ± 0.40 2.08 ± 0.71 95.28 ± 0.90 1.44 ± 0.38

GERDQ+GCN (Ours) 91.00 ± 0.80 3.39 ± 0.75 84.52 ± 1.76 4.68 ± 0.71 93.86 ± 1.22 3.66 ± 0.54

GERDQ+HyperU (Ours) 93.07 ± 0.71 1.80 ± 0.50 89.77 ± 0.88 2.08 ± 0.44 96.83 ± 0.22 1.36 ± 0.12

Table 4: Comparison between our proposed method and original HyperU-GCN in terms of test accuracy (Acc%) and the expected
calibration error (ECE%) on node classification. The numbers in the square bracket indicate the modified weight for the edge
that is connecting the ID nodes and OOD nodes. The experiments are repeated 10 times, and the average results with standard
deviations are reported. The bold represents the best results.

Methods Cora Citeseer PubMed

Acc ECE Acc ECE Acc ECE

HyperU-GCN[0.0] 85.84 ± 1.22 2.16 ± 2.01 72.06 ± 0.96 10.14 ± 5.23 93.10 ± 0.41 8.02 ± 3.83

HyperU-GCN[0.3] 85.38 ± 0.73 4.20± 5.01 71.97 ± 1.18 9.36 ± 4.51 93.17 ± 0.53 5.30± 1.84

HyperU-GCN[0.5] 85.35 ± 0.79 3.48 ± 3.78 70.72 ± 2.21 8.47 ± 4.52 93.33 ± 0.40 5.38 ± 1.05

HyperU-GCN[0.7] 85.10 ± 0.84 3.25 ± 4.06 71.72 ± 0.96 8.37 ± 4.98 93.17 ± 0.36 5.44 ± 0.99

HyperU-GCN[1.0] 85.19 ± 1.10 2.90 ± 4.09 70.86 ± 2.22 9.40 ± 3.47 92.98 ± 0.26 5.22 ± 1.43

HyperU-GCN[random] 86.08 ± 0.82 1.41 ±0.45 71.72 ± 1.02 11.34 ± 4.30 92.86 ± 0.60 7.64 ± 6.08

GERDQ+HyperU (Ours) 85.22 ± 0.78 1.28 ± 0.36 71.81 ± 1.53 3.94 ± 1.28 93.14 ± 0.56 2.59 ± 1.46

worst among all compared methods. And on larger benchmarks
such as Amazon-Computers [32], the calibration error can also
reach 6.24%. Note that our ID/OOD split is different from that in
[33], and the performance of OODGAT [33] is quite inconsistent
on the benchmarks. On Coauthor-Physics [32] it can achieve an
calibration error of 1.44%. However, on other benchmarks such as

PubMed [43] the calibration error reaches 9.35% on average. The
experimental results suggest that neither the post-hoc calibration
techniques nor the uncertainty-aware methods can consistently
provide low calibration errors on all the benchmarks. The methods
that aim to calibrate the result of GNN fail on some benchmarks
when the graph is mixed with OOD nodes.

2276

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Weili Shi et al.

(a) GCN (b) ST-GCN (c) GKDE-GCN (d) Ours

(e) GCN (f) ST-GCN (g) GKDE-GCN (h) Ours

(i) GCN (j) ST-GCN (k) GKDE-GCN (l) Ours

Figure 4: Reliability diagrams of GCN, ST-GCN, GKDE-GCN and our method (GERDQ+HyperU) on (a-d) Cora, (e-h) Citeseer
and (i-l) PubMed. Well-calibrated results would have closer alignment with the expected results along the diagonal line.

Our proposed framework calibrates the results of GNN by ex-
ploiting the feedback from the GNN with the change of the edge
weights. The experiments show that when the GNN backbone is
wrapped with our framework, it achieves better calibration error
results on all datasets compared to the original one. For instance, on
Cora [43], GERDQ+GCN can achieve an average calibration error of
1.65%, much lower than that achieved by the original GCN [18]. On
some benchmarks, the ID node classification accuracy obtained by
our method is also boosted compared to the original backbone. For
instance, on Amazon-Photo [32] the accuracy of GERDQ+HyperU
is approximately 1.5% higher than that of the original HyperU-
GCN [42]. In most of the tasks, our GERDQ+HyperU can achieve
the best calibration error with comparable ID node classification
accuracy. The results validate the effectiveness of reinforcement
learning strategy on adjusting graph edge weights to reduce the
negative impact from OOD nodes.

To better illustrate the expected calibration errors, we draw the
reliability diagram for GCN [18], ST-GCN [48], GKDE-GCN [46],
and our proposed method (GERDQ+HyperU) on all the benchmarks.
As shown in Figure 4 and Figure 5, the closer alignment of the
output from the GNN model and expected results means a lower
calibration error. We observe that for the baseline methods, some

of the predictions are over-confident or under-confident and the
outputs deviate from the diagonal line. The diagrams also show
that our method achieves better alignment than other baselines.

5.3 Ablation Study
In the ablation study, we manually adjust the weight of edges that
are connected the ID nodes and OOD nodes in HyperU-GCN [42]
and compare the results with our proposedmethod, GERDQ+HyperU.
The edge weights are manually set to 0, 0.3, 0.5, 0.7, and random
numbers between 0 and 1. The results are illustrated in Table 4. By
lowering the weight of edges that are connected the ID nodes and
OOD nodes, the calibration error can be reduced on some datasets
compared to settings when the edge weight is 1. However, their
performance is still lower than that of our proposed method. Be-
sides, the improvement is not consistent for the all chosen edge
weights. The results suggest that simply lowering the edge weight
on HyperU-GCN cannot necessarily ensure the reduction of calibra-
tion on all the datasets. The experiments suggest that the optimal
graph structure obtained by our framework is more effective in
reducing the calibration error than simply lowering the weight of
targeted edges.

2277

Calibrate Graph Neural Networks under Out-of-Distribution Nodes via Deep Q-learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

(a) GCN (b) ST-GCN (c) GKDE-GCN (d) Ours

(e) GCN (f) ST-GCN (g) GKDE-GCN (h) Ours

(i) GCN (j) ST-GCN (k) GKDE-GCN (l) Ours

Figure 5: Reliability diagrams of GCN, ST-GCN, GKDE-GCN and our proposed method (GERDQ+HyperU) on (a-d) Amazon-
Photo, (e-h) Amazon-Computers and (i-l) Coauthor-Physics. Well-calibrated results would have closer alignment with the
expected results along the diagonal line.

(a) (b)

Figure 6: Distribution of ID nodes predictive uncertain-
ties for (a) HyperU-GCN and (b) our proposed method
(GERDQ+HyperU) on the Cora dataset.

Figure 6 depicts the distribution of nodes’ predictive uncertain-
ties of ID nodes and OOD nodes for original HyperU-GCN [42]
and our proposed method (GERDQ+HyperU) on Cora [43]. The
results show that when wrapped with our framework, the average
entropy of the ID nodes achieved by our method is lower than that
of original HyperU-GCN [42]. And the lower entropy indicates the
lower uncertainty for the ID nodes,

6 CONCLUSION
In this paper, we have investigated the calibration of node classifi-
cation on graphs with out-of-distribution (OOD) nodes. Existing
methods that aim to calibrate the output of graph neural network
on normal graph generally fail to provide reliable prediction in our
problem setting due to the negative impact of OOD nodes. To tackle
this challenge, we proposed a Graph Edge Re-weighting via Deep
Q-learning framework. In our framework, we formulate the edge it-
eration as the Markov Decision Process and aim to achieve optimal
graph structure by exploiting the feedback from the graph neural
network with adjusted edge weights. With the refined edge weights,
the negative impact from OOD nodes can be reduced and results
from the GNN can be calibrated implicitly. Extensive experimental
results on six benchmark datasets demonstrate that our method
can achieve lower calibration errors with comparable classification
accuracy compared to the baseline methods.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback. W. Shi and S. Li are supported by the U.S. Army Research
Office Award under Grant Number W911NF-21-1-0109.

2278

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Weili Shi et al.

REFERENCES
[1] Richard Bellman. 1957. Foundations of Markov Decision Processes. Annals of

Mathematics 2, 2 (1957), 344–376.
[2] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative deep graph learning

for graph neural networks: Better and robust node embeddings. Advances in
neural information processing systems 33 (2020), 19314–19326.

[3] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui
Xie, Tongliang Liu, Bo Han, and James Cheng. 2022. Learning causally invariant
representations for out-of-distribution generalization on graphs. Advances in
Neural Information Processing Systems 35 (2022), 22131–22148.

[4] Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum,
David Wipf, Furong Huang, and Tom Goldstein. 2021. A Closer Look at Distribu-
tion Shifts and Out-of-Distribution Generalization on Graphs. In NeurIPS 2021
Workshop on Distribution Shifts: Connecting Methods and Applications.

[5] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. 2021. SLAPS: Self-
supervision improves structure learning for graph neural networks. Advances in
Neural Information Processing Systems 34 (2021), 22667–22681.

[6] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learn-
ing discrete structures for graph neural networks. In Int’l Conf. on machine
learning. PMLR, 1972–1982.

[7] Xiang Gao, Wei Hu, and Zongming Guo. 2020. Exploring structure-adaptive
graph learning for robust semi-supervised classification. In 2020 ieee Int’l Conf.
on multimedia and expo (icme). IEEE, 1–6.

[8] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2019. Graphnas:
Graph neural architecture search with reinforcement learning. arXiv preprint
arXiv:1904.09981 (2019).

[9] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
of modern neural networks. In Int’l Conf. on machine learning. PMLR, 1321–1330.

[10] Dongliang Guo, Zhixuan Chu, and Sheng Li. 2023. Fair Attribute Completion on
Graph with Missing Attributes. In The Eleventh Int’l Conf. on Learning Represen-
tations.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers.
2022. What Makes Graph Neural Networks Miscalibrated? Advances in Neural
Information Processing Systems 35 (2022), 13775–13786.

[13] Xiaodong Jiang, Pengsheng Ji, and Sheng Li. 2019. CensNet: Convolution with
Edge-Node Switching in Graph Neural Networks.. In IJCAI. 2656–2662.

[14] Xiaodong Jiang, Ronghang Zhu, Pengsheng Ji, and Sheng Li. 2023. Co-Embedding
of Nodes and Edges With Graph Neural Networks. IEEE Transactions on Pattern
Analysis & Machine Intelligence 45, 06 (2023), 7075–7086.

[15] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD Int’l Conf. on knowledge discovery & data mining. 66–74.

[16] Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M
Bronstein. 2022. Differentiable graph module (dgm) for graph convolutional
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 2
(2022), 1606–1617.

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[18] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. In Int’l Conf. on Learning Representations.

[19] Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in neural
information processing systems 12 (1999).

[20] Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. 2020. Policy-gnn:
Aggregation optimization for graph neural networks. In Proceedings of the 26th
ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. 461–471.

[21] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2022. Learning invariant
graph representations for out-of-distribution generalization. Advances in Neural
Information Processing Systems 35 (2022), 11828–11841.

[22] Sheng Li and Yun Fu. 2014. Learning balanced and unbalanced graphs via low-
rank coding. IEEE Transactions on Knowledge and Data Engineering 27, 5 (2014),
1274–1287.

[23] Sheng Li, Hongfu Liu, Zhiqiang Tao, and Yun Fu. 2017. Multi-view graph learning
with adaptive label propagation. In IEEE Int’l Conf. on Big Data (Big Data). IEEE,
110–115.

[24] Wenqian Li, Yinchuan Li, Zhigang Li, Jianye Hao, and Yan Pang. 2023. DAG
Matters! GFlowNets Enhanced Explainer For Graph Neural Networks. CoRR
abs/2303.02448 (2023).

[25] Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. 2022. Graphde: A generative
framework for debiased learning and out-of-distribution detection on graphs.
Advances in Neural Information Processing Systems 35 (2022), 30277–30290.

[26] Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. 2023. Good-d: On unsupervised
graph out-of-distribution detection. In Proceedings of the Sixteenth ACM Int’l
Conf. on Web Search and Data Mining. 339–347.

[27] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan.
2022. Towards unsupervised deep graph structure learning. In Proceedings of the
ACM Web Conf. 2022. 1392–1403.

[28] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen,
and Xiang Zhang. 2021. Learning to drop: Robust graph neural network via
topological denoising. In Proceedings of the 14th ACM Int’l Conf. on web search
and data mining. 779–787.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[31] Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. 2021. Rein-
forcement learning enhanced explainer for graph neural networks. Advances in
Neural Information Processing Systems 34 (2021), 22523–22533.

[32] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[33] Yu Song and Donglin Wang. 2022. Learning on Graphs with Out-of-Distribution
Nodes. In Proceedings of the 28th ACM SIGKDD Conf. on Knowledge Discovery
and Data Mining. 1635–1645.

[34] Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and
Stephan Günnemann. 2021. Graph posterior network: Bayesian predictive uncer-
tainty for node classification. Advances in Neural Information Processing Systems
34 (2021), 18033–18048.

[35] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy gradient methods for reinforcement learning with function approximation.
Advances in neural information processing systems 12 (1999).

[36] Leonardo Teixeira, Brian Jalaian, and Bruno Ribeiro. 2019. Are graph neural
networks miscalibrated? arXiv preprint arXiv:1905.02296 (2019).

[37] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI Conf. on artificial
intelligence, Vol. 30.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. [n. d.]. Graph Attention Networks. In Int’l Conf. on
Learning Representations.

[39] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. 2021. Be confident!
towards trustworthy graph neural networks via confidence calibration. Advances
in Neural Information Processing Systems 34 (2021), 23768–23779.

[40] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. Am-
gcn: Adaptive multi-channel graph convolutional networks. In Proceedings of the
26th ACM SIGKDD Int’l Conf. on knowledge discovery & data mining. 1243–1253.

[41] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. 2021.
Discovering Invariant Rationales for Graph Neural Networks. In Int’l Conf. on
Learning Representations.

[42] Xueying Yang, Jiamian Wang, Xujiang Zhao, Sheng Li, and Zhiqiang Tao. 2022.
Calibrate Automated Graph Neural Network via Hyperparameter Uncertainty. In
Proceedings of the 31st ACM Int’l Conf. on Information & Knowledge Management.
4640–4644.

[43] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In Int’l Conf. on machine learning.
PMLR, 40–48.

[44] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye.
2021. Heterogeneous graph structure learning for graph neural networks. In
Proceedings of the AAAI Conf. on artificial intelligence, Vol. 35. 4697–4705.

[45] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil
Shah. 2021. Data augmentation for graph neural networks. In Proceedings of the
aaai Conf. on artificial intelligence, Vol. 35. 11015–11023.

[46] Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. 2020. Uncertainty aware
semi-supervised learning on graph data. Advances in Neural Information Process-
ing Systems 33 (2020), 12827–12836.

[47] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, and Wei Wang. 2020. Robust graph representation learning via
neural sparsification. In Int’l Conf. on Machine Learning. PMLR, 11458–11468.

[48] Ronghang Zhu, Zhiqiang Tao, Yaliang Li, and Sheng Li. 2021. Automated graph
learning via population based self-tuning GCN. In Proceedings of the 44th Int’l
ACM SIGIR Conf. on Research and Development in Information Retrieval. 2096–
2100.

[49] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu,
Carl Yang, and Shu Wu. 2021. A survey on graph structure learning: Progress
and opportunities. arXiv preprint arXiv:2103.03036 (2021).

[50] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang.
2021. Deep graph structure learning for robust representations: A survey. arXiv
preprint arXiv:2103.03036 14 (2021).

2279

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Structure Learning
	2.2 Graph Neural Network Calibration
	2.3 Reinforcement Learning on Graphs
	2.4 Graph Learning with OOD Nodes

	3 Preliminary
	3.1 Problem Formulation
	3.2 Expected Calibration Error
	3.3 Markov Decision Process

	4 Methodology
	4.1 Edge Iteration Process
	4.2 Algorithm Details
	4.3 Discussions

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results
	5.3 Ablation Study

	6 Conclusion
	Acknowledgments
	References

