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Abstract—Inference of unknown opinions with uncertain, ad-
versarial (e.g., incorrect or conflicting) evidence in large datasets
is not a trivial task. Without proper handling, it can easily
mislead decision making in data mining tasks. In this work,
we propose a highly scalable opinion inference probabilistic
model, namely Adversarial Collective Opinion Inference (Adv-
COI), which provides a solution to infer unknown opinions with
high scalability and robustness under the presence of uncertain,
adversarial evidence by enhancing Collective Subjective Logic
(CSL) which is developed by combining SL and Probabilistic
Soft Logic (PSL). The key idea behind the Adv-COI is to learn
a model of robust ways against uncertain, adversarial evidence
which is formulated as a min-max problem. We validate the out-
performance of the Adv-COI compared to baseline models and
its competitive counterparts under possible adversarial attacks
on the logic-rule based structured data and white and black
box adversarial attacks under both clean and perturbed semi-
synthetic and real-world datasets in three real world applications.
The results show that the Adv-COI generates the lowest mean
absolute error in the expected truth probability while producing
the lowest running time among all.

I. INTRODUCTION

Under highly dynamic communication networks, informa-
tion received for decision making may be uncertain, in-
complete, modified/forged and/or missing due to unreliable
medium and/or the presence of malicious entities. Research
on decision making under uncertainty has been studied in
evidence or belief theories considering uncertainty reasoning.
On the other hand, the data mining research mainly focused
on efficient reasoning of data uncertainty that impacts ways
of providing solutions of other data mining tasks.

In the belief or evidence model research (i.e., knowledge
representation and reasoning, or KRR), Subjective Logic
(SL) [7] has been proposed to explicitly deal with uncertainty
in subjective opinions. SL is a probabilistic logic representing
an opinion in terms of belief, disbelief, and uncertainty for a
binary opinion (i.e., pro vs. con). For multinomial or hyper-
nomial opinions, SL provides a set of logic operators that allow
deriving structural relations between opinions (i.e., random
variables) in a network with entities for vertices and their
relationships for edges. However, the dyadic combinations of
different opinions in SL are well-known as its limitation in
scalability [12]. Probabilistic Soft Logic (PSL) [3] provides
collective reasoning with high scalability on the relationships

Fig. 1: An illustration of adversarial attacks on the logic
rule-based structural data (Trust inference), given opinions of
relationships in (A, B), (B, D), (A, C), (C, D). Our goal is to
predict trust opinion from A to D. After the attack on both
opinion and graph structure, A has a high chance to distrust
D, unlike the results on the clean data.

between opinions based on the known truth probability; but
it cannot deal with uncertainty. [12] proposed Collective SL
(CSL) by combining the merits of both SL and PSL capable
of handling uncertain opinions as well as processing large-
scale network data. However, CSL is not robust to simple
noisy or adversarial perturbed data, which is confirmed in our
experimental findings.

The key research questions we aim to answer are: How to
develop a model that can efficiently fool uncertainty in
inferring unknown opinions in large network data? How
reliable are their results? To the best of our knowledge,
these research questions have not been answered in both
belief/evidence theory and data mining research.

In this paper, we design attacks injecting adversarial ev-
idence to test the robustness of uncertainty-based opinion
prediction probabilistic models, where the data structures
are represented by first-order logic rules. In addition, we
investigate the robustness and scalability of our Adv-COI
model for accurate opinion inference optimization under the
attacks. Adv-COI collectively reasons unknown opinions us-
ing the relations represented by the logical rules between
given/unknown opinions, as demonstrated in Fig. 1.

We formulate this opinion prediction problem as a min-



max problem to measure the robustness against adversarial
evidence (e.g., conflicting or wrong evidence). As a “black-
box,” inference method, Adv-COI infers adversarial training
opinions (i.e., attacker’s opinions) without knowing the ground
truth of testing opinions (i.e., target opinions). Attacking a
model tends to be easier than defending against attacks. We
proposed novel augmented first order rules while inferring
unknown opinions, in which Adv-COI learns a soft indicator
for each training opinion to decrease the influence of perturbed
adversarial training opinions. We validate the performance of
the Adv-COI in terms of the opinion prediction accuracy,
robustness against adversarial evidence, and scalability by
comparing it with baseline and other competitive counterparts
based on the semi-synthetic and real world datasets. The key
contributions of this work are:
• A novel, robust opinion inference model is proposed to

predict unknown opinions under attack injecting adversar-
ial evidence based on the structured data, which has not
been considered in the literature. We introduce a projected
gradient based opinion perturbation attack, and a greedy
algorithm for the structure attack on network graph, and
a defense mechanism against them.

• The proposed scalable opinion inference algorithm, Adv-
COI, is highly scalable in predicting unknown opinions in
large, adversarial network data, by benefiting from learning
and defending against opinion and structure perturbation
attacks while inferring the unknown opinions.

• The performance of the Adv-COI is validated based on
four semi-synthetic and two real world datasets showing
its outperformance over other counterparts under different
level of the white and black box attacks (opinion and
structure unnoticeable perturbation attacks) in three real-
world applications.

II. RELATED WORK

Probabilistic and Belief Models: Due to lack of evidence
or knowledge, a large volume of works has been proposed to
model uncertainty in network data as a joint distribution over
a set of variables, in which each variable relates to a node
in the network. To address the computational limitations of
Markov Logic Networks (MLNs) and Markov Random Fields
(MRFs), a new probabilistic logic, called PSL [5], is designed
to define relations between the truth probabilities of binary
variables, and the inference of PSL rules based on Hinge-
Loss-MRFs [3]. However, PSL has not explicitly dealt with
uncertainty in derived relations of the truth probabilities. In
evidence / belief theory, SL is proposed to define an opinion
explicitly dealing with uncertainty. SL offers a variety of
operators to fuse multiple opinions. But SL is limited in its
scalability as it combines opinions in a dyadic manner.
Hybrid or deep learning (DL)-based uncertainty models:
CSL [12] reasons an opinion under uncertainty (i.e., vacuity)
for a scenario where all the node-level opinions in a network
have the same uncertainties but different belief or disbelief.
Similar to CSL, Adv-COI combines the merits of SL and
PSL; however, CSL lacks tolerance or resistance against noisy

or perturbed data. GCN-VAE-opinion (graphical convolutional
network-variational autoencoder-opinion) [15] is one of DL-
based opinion inference models adopting GCN and VAE
to deal with uncertain opinions characterized by a set of
heterogeneous belief and uncertainty in a network data.

Adversarial Attack: Recently, researchers have studied the
vulnerability of adversarial machine learning (ML). Most
approaches have focused on DL models, studying the effect
of adversarial ML on image classification, Neural Network
(NN) policies [21], and autonomous driving system, speech
recognition, or text classification models. [22], [23] proposed
adversarial attack methods on DL based graph learning tasks.
Several studies investigated how to generate the adversarial
examples [17]–[19].

Unlike the above existing state-of-the-art approaches, our
work studies uncertain, subjective opinions in large network
data where there exists adversarial evidence whose injection is
first designed to test the robustness of the proposed Adv-COI.

III. BACKGROUND

A. Subjective Logic

In SL, a binomial opinion about the truth of a proposition
x is represented as the tuple (bx, dx, ux, ax), where bx is the
belief that is true, dx is the belief that x is false, ux is the
uncertainty, and ax is the base rate (a prior probability in
the absence of evidence), as well as bx + dx + ux = 1 and
bx, dx, ux, ax ∈ [0, 1]. A Beta PDF is the same as a binomial
opinion through a specific bijective mapping [7]. Given the
binary domain X = {x, x̄} and the value x ∈ X, Beta(px) is
the probability density function Beta(px ;α, β) : [0, 1] → R≥0
where px + px̄ = 1. The Beta PDF is given by:

Beta(px ;α, β) = Γ(α + β)
Γ(α) + Γ(β) (px)α−1(1 − px)β−1, (1)

where α, β > 0. The α and β parameters can simply be repre-
sented by the base rate ax and the observation evidence (rx, sx)
where rx is the amount of positive evidence and sx is the
amount of negative evidence α = rx+axW, β = sx+(1−ax)W ,
W is the non-informative prior weight in the absence of rx or
sx . The expected probability of the Beta PDF is:

E(x) = α

α + β
=

rx + axW
rx + sx +W

. (2)

The equivalence of a binomial opinion and a Beta PDF can
be achieved through the following mapping rule:

bx =
rx

rx + sx +W
, dx =

sx
rx + sx +W

, ux =
W

rx + sx +W
. (3)

B. Adversarial Attack and Defense

1) Adversarial Attack: We introduce two kinds of adversar-
ial attacks related to our work: feature and structure attacks.



TABLE I: Key notations
XS = [XS1 , . . . , XSN

],
pS = [pS1 , . . . , pSN

],
ωS = [ωS1 , . . . , ωSN

]

XS is a vector of N input binary random variables whose
subjective opinions are unknown. pS and ωS are the
corresponding vectors of truth probabilities and subjective
opinions of XS , respectively.

X
S
= [X

S1
, . . . , X

SM
],

p
S
= [p

S1
, . . . , p

SM
] ,

ω
S
= [ω

S1
, . . . , ω

SM
]

X
S

is a vector of M input binary random variables whose
subjective opinions are known. p

S
and ω

S
are the cor-

responding vectors of truth probabilities and subjective
opinions of X

S
, respectively.

Si (or Si ) indicates the index of ith element in S (or Si )
ωSi

= (bSi , dSi , uSi , aSi ) A binomial subjective opinion of a binary random variable
XSi

as defined in Section III-A
b
S
= (b

S1
, · · · , b

SM
) a vector of M binary random variables which we want to

learn during our adversarial inference.
q(p, b

S
) A new pdf function that fits the logic rules defined in R as

well as meets the minimal KL-divergence distance to the
posterior Prob(p, b

S
|X

S
;ωS, θ) (See Eq. (17)).

a) Projected Gradient Descent (PGD) attack: PGD at-
tack [24] is an iterative variant of Fast Gradient Sign Method
(FGSM) [20], in each iteration, PGD follows the update rule:

xadvl+1 = clip[a,b]{xl + ε · sign(∇xadv
l
L(xadvl , y, θ))} (4)

where the outer clip function clip[a,b](·) keeps xadv
l+1 within a

predefined perturbation range. PGD can also be interpreted as
an iterative algorithm to solve the following problem:

max
xadv :‖xadv−x ‖C ≤γ

L(xadv, y; θ) (5)

where C ∈ {0, 2,∞}, γ represents the perturbed level. For
example, `∞-norm distance measures the maximum change
to any of the coordinates.

b) Attack on graph structure: [22], [23] considered
adversarial attacks on graph data focusing on specific types
of attacks on DL models. Structure perturbation includes
adding/removing edges/nodes aiming to increase the misclas-
sification of the target nodes/edges. Each work formulated its
own unified form by:

max
G′,D(G,G′)≤∆

∑
i

L( fθ∗ (G′ci , ci), y) (6)

where L is the loss function, G′ final perturbed graph, ci may
be a target node/edge and G′ci its associated perturbed graph,
D(·) is a distance metric, and ∆ is the perturbed cost/budget.

2) Adversarial Training: Adversarial training is a defense
method against adversarial samples in [20]. This approach
attempts to improve the robustness of the model by training
or inferring it together with adversarial samples. Adversarial
training solves the following min-max problem:

min
θ

max
xadv :D(x,xadv )≤γ

L(xadv, y, θ), (7)

where D(x, xadv) represents certain distance metric between
x and xadv . The inner maximization problem is equivalent
to constructing correct or strongest adversarial samples. If `∞
distance is employed as the distance metric D(x, xadv), the
inner maximization problem is equivalent to the adversarial
problem solved by PGD, i.e., Eq. (5). The outer minimization
is the standard training or inference procedure.

IV. ADV-COI PROBABILISTIC INFERENCE MODEL

We introduce our proposed method Adv-COI, a probabilistic
inference model for predicting unknown opinions on the
structured data where the structural relationships between data
are captured by first-order logic rules. We study the adversarial

attacks to the perturbation of given opinions or graph structure,
and proposed a novel defense mechanism against adversarial
attack. We proposed a novel augmented first order logic rules
to enhance the robustness of our model against adversarial
attacks. Our Adv-COI mainly is two-fold: The generation of
adversarial opinions and the robust opinion inference.

A. Problem Formulation
We consider the task of unknown opinion prediction

against adversarial attacks. To formally put, given a factor
graph network, defined as G = (V, E), and V and E are the
node and edge set of the graph G, X ∈ {0, 1} |E |×T represents
the edges associated observations. Without loss of generality,
we assume the edge-ids to be EI = {1, · · · , N + M}, and the
node-ids VI = {1, · · · , |NV |}, NV is graph size. Each edge
index of i ∈ EI is associated with a set of local observation Xi .
Assume we are only given the observation of a subset of edges
S ∈ EI, |S | = M , and the set of local observations for edges
in S is denoted by XS = {Xi |i ∈ S}. The opinions of these
variables are estimated based on the given observations, and
denoted by ωS = (ωS1

, · · · , ωSM
), implying that the PDF of

the truth probability of the variable XSi
, pSi

, is Beta(pSi
;ωSi
),

where Si indicates the index of ith element in S.
Given the above, we aim to predict the unknown opinions

of the rest of the variables (target opinion), S = EI \
S, |S | = N . We denote the observation by XS = {Xi |i ∈ S},
and the unknown opinions as ωS = (ωS1, · · · , ωSN ), imply-
ing that the PDF of the truth probability of the variable,
XSi , pSi , is Beta(pSi ;ωSi ). We denote pS = (pS1, · · · , pSN ),
pS = (pS1

, · · · , pSM
), and assume there is an operator Γ hat

concatenates pS and pS in the correct order, p = Γ(pS, pS).
bS = (bS1

, · · · , bSM
) is a vector of M binary random variables

which we want to learn during our adversarial inference.
Given
• The observations XS,and the opinions ωS = (ωS1

, · · · , ωSM
)

of the set of variables in S, where ωSi
= (αSi

, βSi
),

• R = {rk, ρk}Kk=1, a set of logic rules, in which rk and ρk is
the k-th rule and its weight. An augmented logic rule rk
is defined by:

rk :=
∧

i∈I−
S,k

pSi
∧

i∈I−
S,k

(
p
Si
∧ (1 − b

Si
)
)
→

∨
i∈I+

S,k

pSi
∨

i∈I+
S,k

(
p
Si
∨ (1 − b

Si
)
)
, (8)

where I−
S,k

and I−
S,k

refer to the indices of variables in S and S
that appear in the head of the logic rule rk , respectively; and
I+
S,k

and I+
S,k

refer to the indices of variables in S and S that
appear in the tail of the logic rule rk . Without considering
the weight of the rule, the distance to meeting rule rk is
dk(p, bS) = max

{
`k(p, bS), 0

}
, where:

`k (p, bS) = 1 −∑
i∈I+

S,k
pSi −

∑
i∈I+

S,k
(p

Si
+ 1 − b

Si
)

−∑
i∈I−

S,k
(1 − pSi ) −

∑
i∈I−

S,k
(b

Si
− p

Si
). (9)

Goal: Predict ωS , the target opinion of variables in S.



B. Adversarial Attack on Opinion Network

This work focuses on feature and structure adversarial
attacks on graph structured data.

1) Feature Perturbation: is an indirect attack on target
opinions. We formulate the problem as follows:

max
D(·, ·)≤γ

L(·) (10)

where L(·) is an objective, D is widely used distance metrices,
l0, l2 or l∞, with γ being the constraint perturbation level.

2) Structure Perturbation: is a structure attack on factor
graph G, D(·) ≤ ∆ represents a measure of ‘closeness’
for (attributed) graphs, and k is a parameter denoting the
distance/cost budget for the total graph perturbation. In this
setting, we formulate the problem as:

max
G′,D(G,G′)≤∆

LG′(·), (11)

where LG′ (or L) is our objective, detailed in the following
sections, associated with the perturbed factor graph G′. This
problem is intractable to solve exactly due to discrete domain
and constraints. Hence, we propose a scalable greedy approx-
imation algorithm to solve the optimization problem in Eq.
(11), where G′ is obtained after adding/removing edges on
the original graph G.

For a targeted edge c0, we manipulate (add/remove) the
related candidate edges {c1, · · · , cm} with a budget constrain
(D(G,G′) ≤ ∆). Under the budget constrain, for a given
set of target edges, the modification of G is performed by
sequentially modifying edges of Gt and the edge manipulation
example can be:

G′t+1 =


(Vt, Et ), LG′t − LGt,ci ≤ 0
(Vt, Et ∪ ci), ci < Et,LG′t − LGt,ci > 0
(Vt, Et r ci), LG′t − LGt,ci > 0,

where LG′t is the objective value, LG′t,ci is the objective value
of the updated graph (add/remove candidate edge ci). Repeat
the process until it meets D(G,G′) > ∆, or already traversed
all the candidate edges.

To predict the target opinion under adversarial perturbation
(feature or structure), we need to solve the generalized problem
formulate as:

min
θ

{
max

D(·)≤{γ or ∆}
L(·)

}
(12)

where L(·) indicates the final objective and D is a certain
distance metric on graph perturbation. An inner maximization
constructing an adversarial perturbed graph, and outer mini-
mization is solved by our proposed robust inference model.
Now we discuss how to formulate the objective in detail.

C. Adv-COI Inference Algorithm

1) Formulation of Unknown Opinion Inference: In the
adversarial attack, we see the opinions of variables in set S
as the target opinions whose opinions are unknown, and in S
as the attacker opinions whose opinions might be perturbed.

Without the constraints based on the logic rules, the joint PDF
of all the variables has the following form:

Prob(p, b
S
,XS,XS

;ωS,ωS
,ω0, p0) =

M∏
i=1

{ (
Beta(p

Si
;ω

Si
)
)1−bSi

(
Beta(p

Si
;ω0)

)bSi · Bin(X
Si

; p
Si
)

Bin(b
Si

; p0)
} N∏
l=1

Bin(XSl ; pSl )Beta(pSl ;ωSl ), (13)

where Bin(·) and Beta(·) refer to PDF of a Binomial distribu-
tion and a Beta distribution, respectively. For simplicity, we
denote the parameters as θ = {ωS,ω0, p0}. In the above PDF,
if we do not consider logical relationships, the input variables
and output variables are independent; thus we cannot predict
the target opinions ωS based on the input evidence. The goal is
to identify the opinion vector ωS and the adversarial attacker
indicator vector bS , such that the likelihood Prob(XS;ωS, θ)
is maximized, subject to the constraints defined by the set of
logic rules R. We therefore integrate the logic rules R to model
the dependency between latent probability variables pSi and
pSi

. We apply a commonly used strategy that imposes the rule
constraints on Prob(p, bS |XS;ωS, θ) through an expectation
operator. By the definition in Eq. (9), for each rule, rk , we
expect that the distance to satisfaction dk(·) close to zero,
EProb(p,bS |XS ;ωS,θ)[dk(p, bS)] = 0, with a confidence measured
by the weight ρk . The unknown opinion prediction problem
can be formulated as a maximization problem based on a log
constrained likelihood, �(ωS) by:

max
ωS

�(ωS) = max
ωS

log Prob(XS;ωS, θ) (14)

s.t . EProb(p,bS |XS ;ωS,θ)
[
ρk · dk(p, bS)

]
≤ ξk,

‖ξ‖ ≤ ε, k = 1, · · · ,K,

where ξk is a vector of slack variables. We allow small
violations with slack variables ξk on the logic rules whose
norm is bounded by ε ≥ 0.

2) Approximate Expectation Estimation: The main un-
known opinion prediction under adversarial attack problem in
Eq. (14) has two challenging computational complexity issues:
i) the integral term EProb(p,bS |XS ;ωS,θ)[dk(p, bS)] is analytically
intractable; and ii) the dimension of target opinion ωS is often
large in scale (as large as the number of edges/nodes of our real
world datasets). To solve the maximization problem in Eq. (14)
and find an analytically tractable solution, we adopt posterior
regularization (PR) [4], a probabilistic framework for struc-
tural relational learning. Via applying PR, Adv-COI learns
a simpler density function q(p, bS) that fits the rules while
staying close to the posterior PDF (Prob(p, bS |XS;ωS, θ)).

We propose an efficient approximate expectation estimation
algorithm reducing computational complexity. Due to the
space constraint, we directly show the analytic form of q(p, bS)
and the element-wise solution of ωS = (αS, βS):

q(p, bS) ∝ Prob(p, bS |XS;ωS, θ) · exp
{
−∑K

k=1 ρkdk(p, bS)
}
. (15)

max
αSi

>0,βSi >0
Eql+1

[
log Beta(pSi |αSi , βSi )

]
+ const . (16)



Opinion Inference Algorithm: Now we present an effi-
cient approximate expectation estimation algorithm with less
computational complexity of {Eql+1 [log pSi ], Eql+1 [log(1 −
pSi )] | i = 1, · · · , N}. Because the computation of these ex-
pectation terms is analytically intractable, we adopt a common
approximation approach: p∗ and b∗

S
represent the values at the

most probable setting of p and bS with the current opinion ωS .
The expectations terms Eql+1 [log pSi ] and Eql+1 [log(1 − pSi )
can be approximated as log p∗Si and log(1− p∗Si ), respectively.
The most probable values to predict p∗ and b∗

S
can be

estimated by solving the following optimization problem (from
the analytical solution in Eq. (15)):p∗, b∗

S
= arg min

p,bS

− log q(p, bS) (17)

= arg min
p,bS

− log Prob(p, bS |XS) +
K∑
k=1

ρkdk(p, bS),

where parameters ωS and θ are omitted in the Prob(·) function
for simplicity. To achieve high scalability, we propose an
efficient algorithm using the alternating direction method of
multipliers (ADMM) [9] to solve the above problem. The
ADMM has three main steps: i) forming and initializing
local copies of the variables in each logic rule by constraining
the local copies to be equal to the global variables; ii)
decomposing the problem into independent subproblems; and
iii) block-wise updating until converging to a consensus on
the optimum.

Let p̂k and b̂S,k be local copies of the global variables p
and bS that are involved in the logic rule rk . pk and bS,k be
the variables in p and bS that correspond to p̂k and b̂S,k, (k =
1, · · ·K), respectively. Finally out main problem based on the
ADMM is formulated as follows:

min
p̂,b̂S,p,by

{
− log Prob(p, by |XS) +

K∑
k=1

ρkdk(p, bS)
}
,

s.t . p̂k = pk, b̂S,k = bS,k ∀k = 1, · · · ,K .

The augmented Lagrangian with penalty κ and Lagrange
multipliers λ and θ of the above objective function is:

L(p̂, p, b̂S, bS,λ,ηS) (18)

= − log Prob(p, b
S
|XS) +

K∑
k=1

[
ρkdk(p, bS) +

+
1

2κ
‖p̂k − pk + κλk ‖22 +

1
2κ
‖b̂S,k − bS,k + κηS,k ‖

2
2

]
,

where κ > 0. ADMM finds a saddle point of the Lagrangian
L(p̂, b̂S,λ,ηS, p, bS) by updating the four blocks of variables
at each iteration t:

λt
k = λt−1

k +
1
κ
(p̂t−1

k − pt−1
k ) (19)

ηt
S,k

= ηt−1
S,k
+

1
κ
(b̂t−1

S,k
− bt−1

S,k
) (20)

p̂t
k, b̂

t

S,k
= arg min

p̂k,b̂S,k

ρkdk(pt−1, bt

S
) + 1

2κ
‖p̂k − pt−1

k + κλt
k ‖

2
2

+
1

2κ
‖b̂S,k − bt−1

S,k
+ κηt

S,k
‖22, ∀k = 1, · · · ,K .(21)

pt, bt

S
= arg min

p,bS

L(p̂t, p, b̂t

S
, bS,λ

t,ηt
S
). (22)

The updates of the ADMM make sure that p and bS converge
to the global optimums p∗ and b∗

S
, assuming that there exist

feasible assignments to p and bS . The global variables related
problem in Eq. (22) has an analytical solution ensuring that the
gradient of the objective function is 0. We can efficiently solve
the local variables related problem in Eq. (21) via adopting the
algorithm designed in [3].

Generally the posterior of the inference method is not
trained. We propose an iterative inference algorithm Adv-
COI for uncertainty-based opinion prediction. Adv-COI (i.e.,
a “black-box” inference method) does not use the ground truth
of testing opinions (i.e., target opinions) during the construc-
tion of adversarial opinions and structure perturbation, or infer
of the unknown opinions. As we defined in Section IV-A,
p = Γ(pS, pS), and the opinions of variables in S is given,
and the variables in S are unknown. During the inference, the
Adv-COI learns a soft indicator bS for each training opinions.
Via learning such a vector bS , the Adv-COI makes sure
to decrease the influence of perturbed adversarial opinions.
Our experimental results also prove that the proposed defense
mechanism is effective on both clean and perturbed data.

Following the recipe of adversarial defense, we formulate
the opinion inference problem as:

min
p,bS

{
max
D(·, ·)≤γ

L(p̂, p, b̂S, bS,λ,ηS)
}

(23)

where D(·, ·) indicates a distance metric of feature (opinion)
or a structural adversarial perturbation.

Algorithm 1: Adv-COI
Input: ω

S
, X

S
, R, ω0, p0, α, γ, G, k

Output: ωS
1 #1. Generate adversarial opinions and/or perturbed factor graph.
2 G′, padv

S
:= gen_adv_samples(ω

S
, X

S
, R, ω0, p0, α, γ, G, k);

3 #2. Adversarial collective opinion inference.
4 ωS = collective_opinion_infer(padv

S
,ω

S
, X

S
, R, ω0, p0, G′);

5 return ωS

3) Adv-COI Adversarial Attacks: In Eq. (23), the inner
maximization problem is equivalent to constructing a stronger
adversarial sample.

In fact, solving Eq. (23) to a saddle point can be done
by performing multiple PGD steps or structural perturbation
methods introduced in Section IV-B. Algorithm 1 shows the
pseudo code of the Adv-COI with two main steps: (1) Line
2 generates adversarial opinions via perturb opinions and/or
factor graph structure; and (2) Line 4 infers target opinion
under adversarial attack via Algorithm 2.
`∞-PGD adversarial attack: We want to construct stronger
adversarial opinions, by distorting the truth probability padv

S
of the training opinions, which maximize the total weighted
distance to satisfaction of the rules related to the target (test)
opinions. In Line 2, Algorithm 1 generates training (attacker)



opinions by conducting PGD attacks in γ-ball distortion,
where we directly control the perturbation size with γ:

padv

S
= {pS + δ

∗ |δ∗ = arg max
‖δ ‖∞≤γ

L(p̂, p, b̂S, bS,λ,ηS)}. (24)

where δ = padv

S
− pS . Starting from p0

S
, PGD attack conducts

projected gradient decent iteratively to update the following
adversarial example:

pt+1
S
= ClippS,γ

{pt
S
+ α · sign(∇pS

L(p̂t, pt, b̂t

S
, bt

S
,λt,ηt

S
))}, (25)

where ClippS,γ
(·) element-wise clips the input into the range

[pS − γ, pS + γ], such that pS − γ, pS + γ ∈ [0, 1], “sign”
essentially enforcing the max norm constraint. In Eq. (22),
when other other variables are fixed, it is tractable to calculate
∇pS
L(·). pS indicates the clean data, α = 0.02 indicates each

value changes with 0.02 unit during each update.
Structure adversarial attack: We can generate a perturbed
graph applying the greedy algorithm proposed in Section IV-B
to solve the problem in Eq. (26).

max
G′,D(G,G′)≤∆

LG′(p̂, p, b̂S, bS,λ,ηS), (26)

where LG′ represents the associated perturbed factor graph, ∆
is the maximum unnoticeable change to the factor graph.

Algorithm 2: Adversarial Defense Inference on Opinion
Prediction

Input: padv
S
,ωS, XS, R, ω0, α, G′

Output: ωS
1 l = 1;
2 Initialize ωl

S
;

3 repeat
4 Update ql (p, bS ) via Eq. (15),where p = Γ(pS, padv

S
)

5 t = 1;
6 Initialize pS, bS ;
7 Initialize p̂t

k
and b̂t

S,k
as copies of the probability variables, pt

k
,padv

S
and

bt

S,k
, that appear in the k-th rule in R

8 Initialize Lagrange multipliers λk and ηS,k ,k = 1, · · · , K ;
9 repeat

10 t = t + 1
11 Update λt

k
via Eq. (19), k = 1, · · · , K ;

12 Update ηt

S
via Eq. (20), k = 1, · · · , K ;

13 Update p̂t
k

and b̂t

S,k
by solving the problem in Eq. (21),

k = 1, · · · , K ;
14 Update pt, bt

S
by solving the problem in Eq. (22);

15 until convergence
16 l = l + 1;
17 for i = 1, · · · , N do
18 Update ωl

Si
by solving Eq.(16);

19 until convergence
20 return ωl

S

4) Adv-COI Opinion Prediction with Defense: Adv-COI
is a robust probabilistic inference method against adversarial
attacks, and simultaneously infers unknown opinions and
performs the adversarial learning. The key steps of opinion
inference algorithm are summarized in Algorithm 2.

The outer loop relates to the modified Expectation Max-
imization (EM) procedure. The E′−Step is implemented by
Line 4. The M−Step is implemented from Lines 5 to 18. In
particular, Lines 5 to 15 implement the ADMM procedure to
estimate the most probable values p∗ by solving the optimiza-
tion problem in Eq. (17). The estimated probable values p∗
are used to approximate Eql+1 [log pSi ] and Eql+1 [log(1 − pSi )

TABLE II: Dataset statistics
Application Dataset # Nodes # Edges Avg. Degree

Congestion Prediction Philadelphia (PA) 603 708 1.17
Washington D.C. (DC) 1,383 1,878 1.35

Trust Inference Epinions (EP) 5,000 9,288 1.85

Sybils User Detection
Facebook (FB) 8,078 372,936 23.08

Enron (EN) 67,392 743,244 5.51
Slashdot (SD) 164,336 2,018,920 6.14

as log p̂Si and log(1 − p̂Si ), respectively, which are then used
to implement the M−Step in Lines 17 and 18.
Complexity Analysis: The time complexity of Algorithm 2
is dominated by Lines 13, 14, and 18. Line 18 needs to
solve the optimization problem in Eq. (16) which is the same
as the Maximum Likelihood Estimation (MLE) problem of
a Beta distribution and can be solved using the method of
moments [2] with O(1). Line 13 needs to solve K problems in
Eq. (21) that can be solved using the algorithm designed in [3]
with O(KP), where P is the maximum number of variables
involved in the logic rules, R. Line 14 needs to solve the
optimization problem in Eq. (22) whose analytical solution
can be obtained in O(N +2M). Let L1 and L2 be the numbers
of iterations on the outer and inner loops, respectively. The
overall complexity of Algorithm 2 is O(L1 · L2 · (K + N +
2M + KP)). L1, L2 are small numbers and K problems in
Line 13 can be computed in parallel. If we have sufficient
cores with count C such that O(K/C) ≈ O(1), we then have
O(L1 · L2 · (K + N + 2M + P)), which is linear with respect to
N, M , and K . This proves scalability of our proposed algorithm
with large-scale network data.

V. EXPERIMENTAL SETUP

We evaluate quality, scalability, and real-world utility of
the Adv-COI with other strong baselines based on six semi-
synthetic and real world datasets. All experiments are tested
on 56 CPUs of Intel Xeon (R) E5-2680 with 251G of RAM.

A. Datasets

We validate the Adv-COI on four semi-synthetic datasets
and two real world datasets representing different real world
applications. Dataset statistics are summarized in Table II.

1) DC. and PA. road traffic datasets: These datasets are
the collected traffic data from June 1, 2013 to March 31,
2014 across two cities from INRIX 1, Washington D.C. and
Philadelphia (PA), as summarized in Table II. The raw INRIX
dataset provides traffic speed and reference speed information
for each road link per hour interval. A reference speed is
defined as the “uncongested free flow speed” for each road
segment [1]. It is calculated based upon the 60-th percentile
of the measured speed for all time periods over a few years,
where the reference speed serves as a threshold separating
two traffic states, congested vs. uncongested. The road traffic
dataset for each of the two cities has 43 weeks in total. An
hour is represented by a specific combination of hour of day
(h ∈ {8, · · · , 21}), day of week (d ∈ {1, · · · , 5}), and week
(w ∈ {1, · · · , 43}): (h, d,w).
Estimation of opinions of the training and testing edges.
For each road traffic dataset, the opinion of a specific (training
or testing) link i at an hour (h, d,w) is estimated based

1http://inrix.com/publicsector.asp



on the observations of the same hour in previous T weeks
{xi,h,d,w, xi,h,d,w−1, · · · , xi,h,d,w−T+1} as the evidence, where
xi,h,d,w refers to the congestion observation (0 or 1) of the link
i at hour (h, d,w) and T refers to a predefined time window
size. The belief, disbelief, and uncertainty mass variables bxi ,
dxi , and uxi of a specific link i are estimated as:

bxi =

∑T−1
t=0 xi,h,d,w−t

T +W
, uxi =

W
T +W

dxi =
T −∑T−1

t=0 xi,h,d,w−t
T +W

(27)

where we set the non-informative prior weight (i.e., an amount
of uncertain evidence) W = 2 and the base rate (i.e., prior
knowledge) a = 0.5. For the other datasets, the opinion of
each training/testing edge/nodes is estimated based on the T
observations similar to the above.

2) Epinions: This dataset2 represents a who-trust-who in
an online social network. Epinion trust directed network has
5,000 users (i.e., nodes) and 9,288 trust relationships (i.e.,
edges). As there are no ground truth opinions available from
the dataset, we use a benchmark simulation model [8], [12]
to generate synthetic opinions.

Performance evaluation: After conducting T realizations,
each edge then has up to T trust observations and its opinion
can be estimated based on its trust observations. We consider
a set of candidate values of T ∈ {8, 9, 10, 11}, corresponding
to different uncertainty ranges that will be explained in the
traffic dataset part.

3) Social Networks with Synthesized Sybils Attack: We
utilize three social networks used in [10], [11], for example,
Facebook, Enron, and Slashdot representing different appli-
cation scenarios. We obtained these datasets from SNAP3. A
node in Facebook dataset represents a user on Facebook, and
two nodes are connected if they are friends. A node in Enron
dataset represents an email address, and an edge between two
nodes indicates at least one email was exchanged between
two corresponding email addresses. Slashdot is a technology-
related news website, which allows users to tag each other as
friends or foes. Slashdot network thus contains friend/foe links
between users. We follow the method of synthesizing the Sybil
attack in different scenarios [10], [11]. We use a real social
graph as the Benign region while synthesizing the Sybil region
(for each social network, we use it as the Benign region and
replicate it as a Sybil region) and add attack edges between
the two regions uniformly at random. We label the observation
of the nodes in the Sybil region to “1” at time stamp t=1, “0”
to the nodes in the Benign region. In the exploration step,
we duplicate the observations of each node and process T
realizations, and then we randomly swap observations of 1% of
nodes each realization. Set T = 10 in these three datasets. We
also try different numbers attacking edges between the Benign
region and the Sybil region, {1000, 5000, 10000, 15000, 20000}
which makes our prediction task more challenging.

2http://www.trustlet.org/downloaded_epinions.html
3http://snap.stanford.edu/data/index.html

TABLE III: Logic rules used in the experiments
Epinions Rules [13]

TRUSTS(A, B) ∧ TRUSTS(B,C) → TRUSTS(A,C) A,B and C are users,
Trust(·, ·) indicates their
trust relationship.

¬TRUSTS(A, B) ∧ TRUSTS(B,C) → ¬TRUSTS(A,C)
TRUSTS(A, B) ∧ ¬TRUSTS(B,C) → ¬TRUSTS(A,C)

Road Traffic Rules [14]

NEIGHBOR(E1, E2) ∧ CONGESTED(E1) → CONGESTED(E2) If E1 is a congested
road section and E2 is
its upper neighbor, then
E2 is likely congested.

Sybils Attack Rules [10]

LINKED(User1,User2) ∧ HASLABEL(User1, TypeA) Two linked network
entities share the same
label with a high
probability.

→ HASLABEL(User2, TypeA)

For all these datasets, the testing opinions on the
edges/nodes are randomly selected with the percentages or test
ratios (T R):= N

N+M ×100% ∈ {10%, 20%, 30%, 40%, 50%} and
are predicted based on the observations and known opinions
of the other edges/nodes which are the training edges/nodes.
B. Experimental Setup

1) Baselines: In essence, our method is inspired by SL [6],
PSL [3] (Section III), and CSL [12], so these three methods are
natural baselines. We also compare Adv-COI with GCN-VAE-
opinion 4 (or GCN-VAE) [15] is a state-of-the-art DL-based
method, and a naive Baseline0, which predicts the opinion of
each target testing edge (node) as randomly (1,0,0) or (0,1,0),
always true or false with zero uncertainty.

2) Parameter Settings: SL only has one hyperparameter
that is the maximum length of its independent paths, and we
try different settings [3, · · · , 20] and for each dataset we keep
the settings that return the best result. Adv-COI, PSL and CSL
require logical rules as additional inputs for reasoning. We
consider logic rules from the related papers corresponding to
the datasets. Table III lists the logic rules of each dataset. We
set all rule weights to 1.0,equally important, and ω0 = (1, 1)
and p0 = 0.5. GCN-AVE-opinion we use the recommended
settings from the paper: λ = 0.01 (trade-off parameter), η =
0.001 (learning rate), and P = 16 (dimensionality of latent
encoded vectors), and dropout rate=0.1.

3) Performance Metrics: (1) Expected truth probability
Mean Absolute Error (MAE). Based on Eq. (27), the
uncertainty mass, uSi , for each training or testing opinion
is a known and constant value after the window size T is
predefined, without the actual observations of this link. For this
reason, the empirical analysis is focused on the comparison
between Adv-COI and baselines in terms of Expected truth
probability MAE (denoted as Probability MAE or EP-MAE).
EP-MAE is defined as:

EP-MAE(ωS) =
1
N

∑N

i=1

��� αSi
αSi + βSi

−
α?
Si

α?
Si
+ β?

Si

��� (28)

where ωSi = (αSi , βSi ) and ω?
Si
= (α?

Si
, β?

Si
) refers to the

predicted and true opinions of a target variable Si , respectively,
and

αSi

αSi
+βSi

refers to the expected truth probability (or the
expected belief) of the opinion ωSi . Expected probability MAE
is calculated as the average absolute difference between the

4refer to: https://github.com/zxj32/GCN-VAE-opinion



(a) Expected truth probability MAE for clean data (b) Average running time (c) Expected truth probability MAE for perturbed
data with γ = 0.01

Fig. 2: Expected truth probability MAE and average running time on the clean and perturbed data

estimated expected belief and the true expected belief on all
testing opinions. (2) Adversarial sample transferability. We
measure the adversarial sample correlation between different
models where the correlation is defined by:

ρA7→B =
Mae[B |A] −Mae[B]
Mae[B |B] −Mae[B] (29)

where ρA7→B measures the failing rate using source model
A and target model B, Mae[B] denotes the MAE of model
B without attack, Mae[B |A (or B)] means the MAE under
adversarial samples generated by model A (or B). Obviously, it
is always easier to find adversarial examples through the target
model itself, so we have Mae[B |B] ≥ Mae[B |A] and thus
0 ≤ ρA7→B ≤ 1. However, ρA7→B = ρB 7→A is not necessarily
true, so the correlation matrix is not likely to be symmetric. (3)
Average running time. We compare the running time of the
Adv-COI and other baseline methods on the real world dataset
experiments. (4) Prediction accuracy: measures node/edge
level prediction accuracy where the decisions are made based
on the predicted opinions on real world dataset experiments.

VI. EXPERIMENTS RESULTS

A. Uncertainty-based Opinion Prediction

For validating the performance of the Adv-COI, we con-
ducted comparative performance analysis by comparing it
with the baselines or competitive counterparts in terms of the
metrics based on the six real world datasets in Section V-B.

1) Opinion Inference Performance: Fig. 2 (a) shows the
expected truth probability MAE of the Adv-COI and baselines
on the six datasets for clean data, where T = 10 for Epinions
and three Sybil datasets, T = 43 for two traffic datasets. For
Sybil datasets, the attacking edges between the Benign and
Sybil region are 10,000.

From Fig. 2 (a), we can observe that the Adv-COI out-
performs other five baseline methods on all the datasets with
the minimum MAE generated. The overall performance order
of the compared methods is Adv-COI>GCN-VAE∼CSL>SL
>PSL. Notice that the probability MAE values are higher
on the Epinion dataset for Adv-COI, CSL and GCN-VAE
methods compared to other dataset experiments. Because the
trust relationships of test users’ opinions on Epinion dataset
is inferred from 2-hop neighbors opinion, which makes the
prediction of opinions more challenging; however, Adv-COI
still outperforms the counterparts.

2) Scalability: While exhibiting the above good prediction
quality Adv-COI also shows high scalability on the dataset.
The scale varies from the smallest Philly traffic network with
603 nodes (users) and 708 edges to the biggest one Slashdot
network with 164,336 nodes and 2,018,920 edges. The number
of rule instances changes from 1000 to 2 million. We show
the average running time of our experiments in Fig. 2 (b). We
neglect the running time of Baseline0 method (0.5∼1.5 secs)
and adversarial example generation part. As we have discussed
in Section IV-C4, Adv-COI is linear w.r.t. the number of
testing (N) and training (M) variables and the number logic
rules (K), respectively, and has a lower complexity. Due to
handling the large adjacency and feature matrix, GCN-VAE is
slower for large graphs. The running time of SL increases
exponentially when the network size increases, and is not
scalable for large networks. The running time of PSL is high
when it infers a large number of rule instances. Adv-COI and
CSL scale nearly linear with respect to the network size. This
shows high scalability of the Adv-COI on large datasets.

B. Evaluating Models Under l∞-PGD Attacks

We compare the accuracy under the white box `∞-
PGD attack. We set the maximum `∞ distortion to γ ∈
{0.0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.2, 0.3, 0.4} and report the
probability MAE. We generate adversarial samples of real
world datasets for attacking models of Adv-COI, Baseline0,
CSL and GCN-VAE via following steps: (1) Adv-COI based
on the Eq. (24) to generate perturbed data; (2) Baseline0 based
on random perturbations by adding noise on [−γ, γ] to the
attacker (training) observations (opinions) where maximum
perturbation |δi | ≤ γ, and the following formula for perturbed
attacker opinions: padv

S
= Clip[0,1]{pS +δ

�� |δi | ≤ γ}; (3) CSL
based on the objective function Eq. (33) in [12]; and (4) GCN-
VAE trained based on clean data and generated adversarial
samples. All of our experiments are performed similar to the
poisoning attack fashion.

Fig. 3 shows the effectiveness of the test ratio and distortion
level γ to Adv-COI performance. As expected, we can observe
the overall trend as follows. While the test ratio increases
(the number of attackers decreases), the probability MAE of
the Adv-COI decreases. As distortion level γ increases, the
probability MAE of the Adv-COI increases as well. When the
test ratio is low, the number of perturbed opinions is high. In
this case, the adversarial attack is strong. So, when the test
ratio is 10% and γ = 0.4, the probability MAE results in the



Fig. 3: Effectiveness of test ra-
tio and gamma. The expected truth
probability MAE of Adv-COI on
Epinions dataset.

(a) Epinions (b) DC (c) Enron

Fig. 4: Probability MAE under `∞-PGD attack on three different datasets Epinions, DC
and Enron (lower is better).

Adv-COI is the highest. When we fix the test ratio for all the
datasets, the patterns of probability MAE are similar; so in
our experiments, we only show the results of 30% test ratio.

Fig. 2 (c) shows the results of perturbed data with γ =
0.01. Compared to the results of clean data in Fig. 2 (a), for
an unnoticeable perturbation with γ = 0.01, the probability
MAE results of CSL and GCN-VAE increase dramatically for
large datasets. In this perturbed data experiment, the Adv-COI
outperforms baseline methods on all the dataset settings.

Fig. 4 shows the probability MAE results of the Adv-COI,
Baseline0, CSL, and GCN-VAE methods under `∞-PGD attack
on the Epinions, DC and Enron. Adv-COI outperforms CSL
and GCN-VAE methods and shows strong robustness to `∞-
PGD attacks.

Table IV shows the Sybil and Benign user detection (clas-
sification) accuracy of the Adv-COI and the best competitive
baseline CSL under white box `∞-PGD attack with varying
perturbation γ. We use the belief and uncertainty of predicted
opinions in our decision making during the classification.
Better accuracy is marked in bold. Notice that although our
Adv-COI and CSL both incur accuracy drop, Adv-COI has
high robust defense against adversarial attacks. Adv-COI leads
to an improvement of 20∼32% prediction accuracy compared
to CSL under PGD attack with 0.01 distortion.

From Fig. 2, Fig. 4, and Table IV, we can observe that
the Adv-COI has strong defense and high scalability to large
network datasets, compared with those in baselines.

TABLE IV: Sybils attack prediction accuracy(%) under dif-
ferent γ = {0, 0.01, · · · , 0.2} levels of PGD attack.

Dataset Defense 0 0.01 0.05 0.09 0.2

Facebook Adv-COI 88.9 60.8 60.1 62.2 63.3
CSL 89.0 50.6 50.6 50.6 50.5

Enron Adv-COI 86.7 82.1 82.2 82.3 82.5
CSL 75.3 50.2 50.2 50.1 50.1

Slashdot Adv-COI 87.3 81.6 81.8 81.8 82.4
CSL 73.1 49.5 49.5 49.4 49.4

C. Unnoticeable Structure Attack

After exploring how our designed feature attack method
affects the different model, we will validate unnoticeable
structure attacks on factor graph with different perturbation
level ∆ = {0, 5, 10, · · · , 90, 100}, indicating the number of
perturbation on target nodes.

Fig. 6 (a) shows the probability MAE results of the target
nodes in a direct structure attack with increasing perturbation

level. Based on the proposed method in Section IV-B, from
the testing nodes we randomly selected 20 nodes as target
nodes, and conducted a direct structure perturbation on their
neighbor nodes with different level perturbation. The Adv-COI
shows strong resistance to structure attacks compared to CSL
and GCN-VAE, especially with a high perturbation degree.
Interestingly, when structure perturbation is small (< 20), the
performance for all methods are stable because the Facebook
network has a high average node degree.

We construct stronger adversarial data via conducting on
both structure and opinion perturbation on target nodes, and
the results are shown in Fig. 6 (b). Compared to the Fig. 6 (a),
the performance of all models are dropping, demonstrating the
combination of the structure and opinion attack are stronger
effects to the models. However, Adv-COI still has resistant to
the attack, and lags in an increase of MAE.

D. Black Box Transfer Attack Study

We measure the adversarial sample correlation between
different models, namely Baseline0, Adv-COI, CSL and GCN-
VAE. We employ the method called “transfer attack” [16].
We can imagine, the success rate of the transfer attack is
directly linked with the similarity of the source/target models.
We employ the same method in Section VI-B to generate
adversarial samples for each model.

We select all combinations of source and target models,
and calculate the correlation according to Eq. (29) on all
datasets. Figs. 5 (a), (b) and (c) show black box transfer
attack experimental results on the Epinions, DC and Enron,
respectively. As expected, we can observe from Fig. 5 that
Adv-COI and CSL are similar models, and GCN-VAE also has
a weaker correlation with these two models. The above three
methods are all robust to the same level of `∞ random noise
attacks. From the correlation results, we can conclude that our
`∞-PGD attack generates more accurate adversarial samples
than `∞ random noise attack. Fig. 5 (a) shows Epinions results,
ρCSL7→Adv-COI and ρGCN-VAE7→Adv-COI is around 0.7, indicating
that the Adv-COI has a resistance to their black box attack
to some extent. Figs. 5 (b) and (c) show the results based on
DC and Enron. GCN-VAE and CSL have a correlation with
Adv-COI. GCN-VAE has a weaker correlation with CSL, and
has a strong correlation only in one direction.



(a) Epinions (b) DC (c) Enron

Fig. 5: Black box, transfer attack experiment results.

(a) Structure attack (b) Structure + Opinion attack
Fig. 6: Probability MAE of opinions on target nodes under
different level of (a) structure and (b) structure-opinion (γ =
0.2) attack on Facebook dataset. (lower is better)

VII. CONCLUSION

We proposed the adversarial, collective opinion inference
model, namely Adv-COI, which is a highly scalable, robust
uncertainty-based opinion inference model. Adv-COI derives
unknown opinions based on the known opinion probabilities,
and to defend against adversarial attacks, on the opinion
and graph structure, which have not been considered in the
existing counterparts. The Adv-COI infers unknown opinions
and learns adversarial defense simultaneously. We formulated
the min-max problem in the Adv-COI to better learn the robust
adversarial model as well as the unknown opinion derivation
problem as an uncertainty minimization problem so that the
Adv-COI can effectively predict unknown opinions with lin-
ear complexity. Our extensive experiments based on the six
semi-synthetic and real world datasets demonstrated that the
Adv-COI outperforms the state-of-the-art counterparts on the
opinion prediction tasks of clean and perturbed cases. The
Adv-COI shows lower belief truth probability MAE, higher
scalability on the large graphs and stronger resistance to strong
adversarial attacks, and achieves an improvement of 20∼32%
prediction accuracy, compared to the best baseline CSL under
PGD attack with 0.01 distortion on the opinions. It also
outperforms other the state-of-the-art competitive counterparts
with high margin on the structure attack experiments.
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