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Abstract

Traditional deep neural nets (NNs) have shown the state-
of-the-art performance in the task of classification in var-
ious applications. However, NNs have not considered any
types of uncertainty associated with the class probabilities to
minimize risk due to misclassification under uncertainty in
real life. Unlike Bayesian neural nets indirectly infering un-
certainty through weight uncertainties, evidential neural net-
works (ENNs) have been recently proposed to support ex-
plicit modeling of the uncertainty of class probabilities. It
treats predictions of an NN as subjective opinions and learns
the function by collecting the evidence leading to these opin-
ions by a deterministic NN from data. However, an ENN is
trained as a black box without explicitly considering differ-
ent types of inherent data uncertainty, such as vacuity (uncer-
tainty due to a lack of evidence) or dissonance (uncertainty
due to conflicting evidence). This paper presents a new ap-
proach, called a regularized ENN, that learns an ENN based
on regularizations related to different characteristics of inher-
ent data uncertainty. Via the experiments with both synthetic
and real-world datasets, we demonstrate that the proposed
regularized ENN can better learn of an ENN modeling dif-
ferent types of uncertainty in the class probabilities for clas-
sification tasks.

Introduction
Inherent data uncertainty due to different root causes has
been serious hurdles in providing effective solutions for
real world problems. Critical safety issues often may occur
because different types of uncertainty have not been suf-
ficiently considered and even some perceived uncertainty
tends to be improperly interpreted because of lack of knowl-
edge on the cause of the uncertainty. For example, when an
autonomous vehicle misclassifies objects, this may lead to
highly risky situations. Deep learning (DL) models have re-
cently gained tremendous attention in the data science com-
munity (Kipf and Welling 2016; Veličković et al. 2018). De-
spite their superior performance in various tasks (e.g., clas-
sification or regression), they are limited in dealing with dif-
ferent types of data uncertainty. Predictive uncertainty esti-
mation using Bayesian NNs (BNNs) has been explored for
classification prediction or regression in the computer vi-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sion applications (Malinin and Gales 2018). They consid-
ered well-known uncertainty types, such as aleatoric uncer-
tainty and epistemic uncertainty, where aleatoric uncertainty
only considers data uncertainty caused by statistical random-
ness (e.g., observation noises) while epistemic uncertainty
refers to model uncertainty introduced by limited knowl-
edge or ignorance in collected data. On the other hand, in
the belief / evidence theory, Subjective Logic (SL) (Jøsang,
Cho, and Chen 2018) considered vacuity (or a lack of evi-
dence) as the key dimension of uncertainty. A recent work
on SL has defined other aspects of uncertainty, such as dis-
sonance, consonance, vagueness, and monosonance (Jøsang,
Cho, and Chen 2018).

Traditional deep neural nets (NNs) have been popularly
applied in solving classification tasks. However, NNs have
not been used to deal with uncertainties associated with the
class probabilities to minimize risk due to misclassification
under uncertainty in real life applications. Methods using
BNNs have been proposed to indirectly predict uncertainty
through weight uncertainties. Recently, techniques using ev-
idential neural networks (ENNs) have been proposed to sup-
port explicit modeling of the uncertainty of class probabili-
ties. It treats predictions of a neural net as subjective opin-
ions and learns the function that collects the evidence lead-
ing to these opinions by a deterministic NN from data. How-
ever, an ENN is still trained as a black box without explicitly
considering different types of data uncertainty (e.g., vacu-
ity or dissonance). This paper presents a new approach that
learns an ENN based on regularizations related to different
types of inherent data uncertainty, which we call it regular-
ized ENNs.

Our key contributions are summarized as follows:

1. Our proposed regularized ENNs-based method is the first
that explicitly considers different types of inherent data
uncertainty in learning an ENN for quantifying uncer-
tainty in classification tasks.

2. We validated the performance of our regularized ENNs-
based method via extensive simulation experiments using
both synthetic and real-world datasets. We conducted the
performance comparison of predicting different types of
uncertainty when applying classification methods based
on the regularized ENNs, ENNs (without regularization),
and NNs.



Motivational Scenarios
This paper focuses on scenarios where decision making is
modeled as a classification problem withe the aim of quan-
tifying uncertainty of decision making in terms of classifi-
cation prediction. Such cases is common in the government
and public sectors with the following examples:

• Self-driving cars safety: An autonomous car may deploy
a deep learning system that fails to distinguish the white
side of a truck against bright sky because such type of
the truck has not been known before. In this case, vacuity
(i.e., a lack of evidence) can represent a measure of the
extent the detected object belongs to a class of cars that
has never been known before (i.e., not in a considered do-
main). Further, if the truck is not detected as a single class
type, it increases uncertainty due to vagueness. Or if the
tuck is detected with either one type or the other due to
conflicting evidence, it also increases uncertainty because
of conflicting evidence.

• Public health: The outbreak of an unknown disease oc-
curs and we observe that the correlated symptoms and the
spread patterns cannot be reliably predicted. As described
in other examples, a lack of evidence (i.e., vacuity), con-
flicting evidence supporting either one or the other (i.e.,
dissonance among evidence) or vagueness by failing in
identifying as a single object may significantly lead to in-
creasing uncertainty which introduces high challenging in
decision making.

• Security in network infrastructure: A power network sys-
tem can be targeted by a cyberattack, which can break
down the system which can introduce tremendous dam-
age because this attack is not timely detected. Uncertainty
introduced by vacuity, dissonance, or vagueness (as each
term is discussed above) can delay decisions that can im-
mediately take actions to minimize the damage.

To focus subsequent discussion on a single concrete exam-
ple, we will consider image classification, a critical compo-
nent in autonomous cars. We will quantify the uncertainty
of an image classifier in recognizing objects of a known or
unknown class in images using neural network models.

Related Work
Uncertainty Quantification in Bayesian Deep Learning
(BDL): Machine/deep learning (ML/DL) researchers con-
sidered aleatoric uncertainty (AU) and epistemic uncer-
tainty (EU) based on BNNs for computer vision applica-
tions. AU consists of homoscedastic uncertainty (i.e., con-
stant errors for different inputs) and heteroscedastic uncer-
tainty (i.e., different errors for different inputs) (Gal 2016).
A BDL framework was presented to estimate both AU and
EU simultaneously in regression settings (e.g., depth regres-
sion) and classification settings (e.g., semantic segmenta-
tion) (Kendall and Gal 2017). Later distributional uncer-
tainty is defined based on distributional mismatch between
the test and training data distributions (Malinin and Gales
2018). Dropout variational inference (Gal and Ghahramani
2016) was proposed as one of key approximate inference
techniques in BNNs. Other methods (Eswaran, Günnemann,

and Faloutsos 2017; Zhang et al. 2018) measured overall un-
certainty in node classification but were not focused on un-
certainty decomposition and GNNs.
Uncertainty Quantification in Belief/Evidence Theory:
In belief/evidence theory domain, uncertainty reasoning has
been substantially explored in Fuzzy Logic (De Silva 2018),
Dempster-Shafer Theory (DST) (Sentz, Ferson, and others
2002), or Subjective Logic (SL) (Jøsang 2016). Unlike the
efforts in ML/DL above, belief/evidence theory focused on
reasoning of inherent uncertainty in information resulting
from unreliable, incomplete, deceptive, and/or conflicting
evidence. SL considered uncertainty in subjective opinions
in terms of vacuity (i.e., a lack of evidence) and vagueness
(i.e., failure of discriminating a belief state) (Jøsang 2016).
Recently, other dimensions of uncertainty have been studied,
such as dissonance (due to conflicting evidence) and con-
sonance (due to evidence about composite subsets of state
values) (Jøsang, Cho, and Chen 2018).

Background
This section provides the background knowledge to under-
stand this work including: (1) subjective opinions in SL; (2)
uncertainty dimensions in a subjective opinion; and (3) evi-
dential NNs to predict subjective opinions.
Subjective Opinions in SL: A multinomial opinion in a
given proposition x is represented by ωY = (bY , uY ,aY )
where a domain is Y ≡ {1, · · · ,K} and the additivity re-
quirement of ωy is given as

∑
y∈Y bY (y) + uY = 1. To be

specific, each parameter indicates,
• bY : belief mass distribution over Y;
• uY : uncertainty mass representing vacuity of evidence;
• aY : base rate distribution over Y.
The projected probability distribution of a multinomial opin-
ion is given by:

PY (y) = bY (y) + aY (y)uY , ∀y ∈ Y (1)
Multinomial probability density over a domain of cardi-

nalityK is represented by theK-dimensional Dirichlet PDF
where the special case with K = 2 is the Beta PDF as a
binomial opinion. Denote a domain of K mutually disjoint
elements in Y and αY the strength vector over y ∈ Y and
pY the probability distribution over Y. Dirichlet PDF with
pY as K-dimensional variables is defined by:

Dir(pY ;αY ) =
1

B(αY )

∏
y∈Y

pY (y)(αY (y)−1) (2)

where 1
B(αY ) =

Γ

(∑
y∈Y αY (y)

)
∏

y∈Y(αY (y)) , αY (y) ≥ 0, and

pY (y) 6= 0 if αY (y) < 1.
We term evidence as a measure of the amount of support-

ing observations collected from data in favor of a sample to
be classified into a certain class. Let rY (y) ≥ 0 be the ev-
idence derived for the singleton y ∈ Y. The total strength
αY (y) for the belief of each singleton y ∈ Y is given by:

αY (y) = rY (y) + aY (y)W, (3)
where rY (y) ≥ 0, ∀y ∈ Y



where W is a non-informative weight representing the
amount of uncertain evidence and aY (y) is the base rate dis-
tribution. Given the Dirichlet PDF, the expected probability
distribution over Y is:

EY (y) =
αY (y)∑

yi∈YαY (yi)
=

rY (y) + aY (y)W

W +
∑

yi∈Y rY (yi)
(4)

The observed evidence in the Dirichlet PDF can be mapped
to the multinomial opinions by:

bY (y) =
r(y)

S
, uX =

W

S
, (5)

where S =
∑
yi∈YαY (yi). With loss of generality, we set

aY (y) = 1
K and the non-informative prior weight (i.e.,

W = K), and hence aY (y) ·W = 1 for each y ∈ Y.
Uncertainty Characteristics of Subjective Opinions:
In (Jøsang, Cho, and Chen 2018), the multidimensional un-
certainty dimensions of a subjective opinion based on the
formalism of SL are discussed, such as singularity, vague-
ness, vacuity, dissonance, consonance and monosonance.
These different dimensions of uncertainty can be observed
from binomial, multinomial, or hyper opinions depending
on their characteristics (e.g., vagueness is only observed in
hyper opinions when a composite belief exists). As we deal
with a multinomial opinion in this work, we discuss two
main types of uncertainty dimensions that can be estimated
in a multinomial opinion, which are vacuity and dissonance.

The main cause of vacuity is due to a lack of evidence or
knowledge, which corresponds to uncertainty mass, u, of an
opinion in SL as:

Vac(αY ) =
W

S
. (6)

This type of uncertainty refers to uncertainty because the
analyst does not have sufficient information or knowledge
to analyze the uncertainty.

The dissonance of an opinion can be caused by the same
amount of conflicting evidence and is estimated by the dif-
ference between singleton belief masses (e.g., class labels),
leading to ‘inconclusiveness’ in decision making situations.
For example, given a four-state multinomial opinion with
(b1, b2, b3, b4, u, a) = (0.25, 0.25, 0.25, 0.25, 0.0, a) based
on Eq. (5), although u (vacuity) is zero, one cannot make a
decision if there are the same amounts of beliefs supporting
respective beliefs. Given a multinomial opinion with non-
zero belief masses, the measure of dissonance can be ob-
tained by:

Diss(αY ) =
∑
yi∈Y

bY (yi)
∑

yj∈Y\yi
bY (yj)Bal(yj , yi)∑

yj∈Y\yi
bY (yj)

 , (7)

where the relative mass balance between a pair of belief
masses bY (yj) and bY (yi) is expressed by:

Bal(yj , yi) = 1− |bY (yj)− bY (yi)|
bY (yj) + bY (yi)

, (8)

Recall that we measure the dissonance only when the belief
mass is non-zero. If all belief masses are zero with vacuity

being 1 (i.e., uY = 1), the dissonance (or balance) will be
set to zero.

The relative mass balance has its maximum at 1 when
bY (yj) = bY (yi). The relative mass balance has the min-
imum at 0 when one of the belief masses equals 0. In case
of the zero sum of belief masses in both the nominators and
the denominators of Eq. (7) and Eq. (8), it must be assumed
that the fraction of the sums of belief masses equals 1. But
notice that even with high vacuity (a lack of evidence), high
dissonance can be observed.

The above two uncertainty measures (i.e., vacuity and
dissonance) can be interpreted using class-level evidence
measures of subjective opinions. As in Figure 1, given
three classes (1, 2, and 3), we have three subjective opin-
ions {α1,α2,α3}, represented by the three-class evidence
measures as: α1 = (6, 1, 1),α2 = (20, 20, 20),α3 =
(20, 20, 50). The vacuity and dissonance measures of the
three subjective opinions can be calculated via Eq. (6) and
Eq. (7), respectively.

When the evidence measures of the three classes of a
subjective opinion decrease, the corresponding vacuity in-
creases. When the evidence measures of the three classes of
a subjective opinion become closer (and therefore are more
conflicting with each other), the corresponding dissonance
increases.
Evidential Neural Networks (ENNs): The gold standard
for DNNs is to use the softmax operator to convert the con-
tinuous activations of the output layer to class probabilities.
Although the softmax function provides a point estimate for
the class probabilities of a sample, it does not provide the
associated uncertainty. ENNs are similar to classical NNs,
except that the softmax layer is replaced by an activation
layer (e.g., ReLU) to ascertain non-negative output, which
is taken as the evidence vector for the predicted Dirichlet
distribution.

Given a sample i, let f(xi|Θ) represent the evidence vec-
tor predicted by the network for the classification, where
xi ∈ RL is the observation of a feature in this sample and
Θ is a set of network parameters. Then, the corresponding
Dirichlet distribution has parameters αi = f(xi|Θ) + 1.
Once the parameters of this distribution are calculated, its
mean (i.e., αi/Si) can be taken as an estimate of the class
probabilities.

Let yi be a dummy vector encoding the ground-truth class
of observation xi with yij = 1 and yik = 0 for all k 6= j,
and αi be the parameters of the Dirichlet density on the pre-
dictors. The Dirichlet density Dir(pi;α) is the prior on the
Multinomial distribution Multi(yi|pi). The following sum
of squared loss (SSL) is used to estimate the parameters αi
based on the sample i:

L(f(xi|Θ),yi) =

∫
‖yi − pi‖22
B(αi)

K∏
j=1

p
(αij−1)
ij dpi

=

K∑
j=1

(
y2
ij − 2yijE[pij ] + E[p2

ij ]
)
. (9)

In the current design of ENNs, an ENN is trained as a
black box using the above squared error function as the loss



(a) α = [6, 1, 1],Vac = 0.375,
Diss = 0

(b) α = [20, 20, 20],Vac = 0.05,
Diss = 0.95

(c) α = [20, 20, 50],Vac = 0.33,
Diss = 0.592

Figure 1: Illustration of different vacuity and dissonance of subjective opinions based on their evidence measures.

function with a regularization term to promote epistemic un-
certainty

L(Θ) = E(xi,yi)∼D [L(αi,yi)

+ λtKL
[
Dir(pi;α

−yi
i )||Dir(pi;1)

]]
,

(10)

where KL[·] represent the Kullback-Leibler divergence.
Note that α−yii is the evidence predicted by the network ex-
cept that the ground truth class evidence is set to zero. The
regularization term is necessary to bias the network to gen-
erate high epistemic uncertainty where it is likely to make
errors such as decision boundaries. However, the training of
ENN does not necessarily bias it to return high epistemic
far from the training data at points also far from decision
boundaries.

Given the various characteristics of uncertainty that sub-
jective opinions can describe, we propose a regularized ENN
in the section below to learn an NN that is more effective to
quantify uncertainty for classification tasks through the reg-
ularization on multidimensional uncertainty, such as vacuity
and dissonance.

Figure 2: Illustration of boundary points with high
dissonance and outliers (or OOD samples) with high

vacuity.
Regularized ENNs: Given a set of samples D =
{(x1,y1), · · · , (xN ,yN )}, we can identify some samples
that should expect high vacuity or dissonance using heuris-
tic ways. As shown in Figure 2, the samples with conflict-
ing labels in their neighbors should expect high dissonance.

These samples are often close to the classification boundary.
In addition, outliers (or out-of-distribution samples) should
expect high vacuity.

Let DOOD be the set of out-of-distribution samples in D
and DBOD be the set of samples whose neighboring samples
have conflicting evidence, where the set of samples in in-
distribution (DIN) is set to DIN = D − DOOD − DBOD. We
then propose a training method using a regularized ENN that
minimizes the following loss function:

L(Θ) = E(xi,yi)∼D[L(f(xi|Θ),yi)]−
λ1E(xi,yi)∼DOOD [Vac(f(xi|Θ))]−
λ2E(xi,yi)∼DBOD [Diss(f(xi|Θ))], (11)

over the parameters Θ of f , where λ1 and λ2 are the tradeoff
parameters that decide the importance of the expected uncer-
tainty dimensions associated with vacuity and dissonance.

Experiments & Results
We evaluate our proposed method following the experimen-
tal setup in (Louizos and Welling 2017). We use the stan-
dard LeNet with ReLU non-linearities as the neural network
architecture. All experiments are implemented in Tensor-
flow (Abadi et al. 2015) where the Adam optimizer (Kingma
and Ba 2014) is used with default settings for training.

Experimental Setup
Dataset: The CIFAR10 dataset consists of 60,000 32 × 32
colour images in 10 classes, with 6,000 images per class.
The original classification setting used 50,000 training im-
ages and 10,000 test images.
Out-of-Distribution (OOD) Setting: We used a subset of
the classes in the CIFAR10 dataset for training and the rest
of the subset for testing OOD uncertainty. To be specific,
for training, we use the samples from the first five cate-
gories {airplane, automobile, bird, cat, deer} in the training
set from the CIFAR10 dataset as DIN (i.e., in-distribution),
another two categories {ship, truck} as DOD (i.e., out-
of-distribution), and the left three categories {dog, frog,
horse} for testing the OOD. For DBOD (i.e., boundary-out-
of-distribution) dataset, we select the boundary sample by
taking the following steps: (1) calculate the distance between
each training image; (2) for each image, choose top 10 sim-
ilar images as observed evidence; (3) calculate dissonance



based the 10 pieces of observed evidence for each training
image; and (4) choose the 500 images with the highest dis-
sonance. Here we measure the similarity based on the cosine
similarity metric (Bishop 2006). by:

Sim(A,B) =
A ·B

‖A‖2 · ‖B‖2
, (12)

whereA andB are the feature vectors of two images and the
raw image pixels are treated as the features for the cosine
similarity.
Synthetic Dataset: We generate a dataset of three
classes (1, 2, and 3) in a two dimensional space.
We sample 1,000 points of each class (1, 2, and

3) from N
((−2
−2

)
,

(
1 0
0 1

))
, N
((

0
1.464

)
,

(
1 0
0 1

))
,

and N
((

2
−2

)
,

(
1 0
0 1

))
, respectively. In addition, we

sample 100 OOD points from N
((−8
−8

)
,

(
1 0
0 1

))
and

N
((

8
−8

)
,

(
1 0
0 1

))
each. Therefore, we have 3,000 in-

distribution points and 200 out-of-distribution points in to-
tal. We expect that the testing points near the boundary of the
three classes should expect high dissonance measures and
the testing points that are far away from the 3,000 training
points should expect high vacuity measures.
Comparison Schemes: We compared the following ap-
proaches:
• L2 corresponds to the standard deterministic neural nets

with softmax output and weight decay;
• ENN refers to evidential deep learning model (Sensoy,

Kaplan, and Kandemir 2018);
• ENN-Vac uses ENN with the vacuity regularization only;
• ENN-Diss uses ENN with the dissonance regularization

only;
• ENN-Vac-Diss uses ENN with both the vacuity and dis-

sonance regularization.

Parameter Tuning: We trained the same model LeNet
architecture using 20 and 50 filters with size 5 × 5 at
the first and second convolutional layers, respectively; and
500 hidden units are used for the fully connected layer,
same as in the ENN model (Sensoy, Kaplan, and Kandemir
2018). For all comparison methods, we set batch size =
1000, learning rate = 0.01, dropout rate = 0.9 and
weight decay coefficient = 0.005. For vacuity and disso-
nance regularization parameters, we set λ1 = 0.01, λ2 =
0.01. The values of the parameters used are obtained by tun-
ing them to show the optimal effect of using regularization
for synthetic data.
Metrics: Our approach directly quantifies vacuity and dis-
sonance based on Eqs. (6) and (7), respectively. However,
some approaches use entropy to measure prediction uncer-
tainty as in (Louizos and Welling 2017), i.e., uncertainty in
predicted probabilities increases as their entropy increases.
To be fair, we use the same metric for evaluating prediction

uncertainty for OOD in the rest of the paper and for class
probabilities. We use the empirical CDFs over the range of
possible entropy [0, log 5] for all models trained with the CI-
FAR10 dataset. The curves closer to the bottom right cor-
ner of the plot are considered desirable, indicating maxi-
mum entropy in all predictions, leading to high OOD de-
tection (Louizos and Welling 2017).

Experimental Results

Results with Synthetic Datasets: In this experiment, we
trained the model based on the in-distribution class (i.e.,
yellow, red and white nodes) and tested the rest of nodes
except that ENN-Vac and ENN-Vac-Diss also use outlier
nodes (pink nodes at both bottom left and bottom right cor-
ners) in the training, ranging in [−10, 10]× [−10, 10], where
each coordinate represents the values of node features in
the given synthetic dataset. In Figure 3, the yellow, red and
white nodes are training nodes where the contour map in-
dicates the different level of strengths from purple (weak,
low uncertainty) to green (strong, high uncertainty) for a
given uncertainty (i.e., vacuity, dissonance). Here, we eval-
uate the performance of the all four schemes (i.e., ENN,
ENN-Vac, ENN-Diss, and ENN-Vac-Diss) in terms of clas-
sification predictions and how different uncertainty types
are measured under different schemes. Figures 3a and 3c
show vacuity from ENN and ENN-Vac, respectively. The
observed high vacuity in Figure 3c (ENN-Vac) is more rea-
sonable as the opinions of nodes are far away from the train-
ing data. That is, since OOD class nodes are expected to
have lack of evidence with high vacuity. Region influenced
by our OOD training nodes extend to the whole bottom area
which gives more advantages of OOD detection. Figures 3b
and 3d show the observed dissonance of nodes’ subjective
opinions. As expected, Figure 3d shows a more reasonable
level of dissonance than Figure 3b, exhibiting stronger dis-
sonance in the boundary areas among three classes. Figure 3
also demonstrates that the choice of OOD samples is critical
for Vacuity to be high far from the training data. Ideally, the
vacuity should be high at the upper portions and sides of Fig-
ure 3c as well. It indicates that the selection of appropriate
OOD samples affects the accurate estimation of vacuity.

Results with Cifar Datasets: Figure 4 shows the empiri-
cal CDFs for all models trained with the CIFAR10 dataset.
The curves closer to the bottom right corner of the plot
are desirable, indicating maximum entropy in all predic-
tions (Louizos and Welling 2017). It is clear that the un-
certainty estimates of our model ENN-Vac is significantly
better than those of the baseline methods (ENN and Soft-
max), which shows the benefit of using vacuity as an indi-
cator of uncertainty to improve OOD detection. ENN-Diss
is comparable with ENN, showing that dissonance regular-
ization does not help significantly for the OOD detection.
One interesting pattern shows that ENN-Vac-Diss outper-
formed among all other methods, demonstrating that con-
sidering both vacuity and dissonance regularized can signif-
icantly improve the OOD detection.



(a) Vacuity contour (ENN model) (b) Dissonance contour map (ENN model)

(c) Vacuity contour map (ENN-Vac model) (d) Dissonance contour map (ENN-Vac-Diss model)

Figure 3: Comparison between the vacuity and dissonance of the predictions of ENN ((a) and (b)) and regularized ENN ((c)
and (d)) where each node’s feature value is represented by a coordinate with the range in [−10, 10]× [−10, 10].

Conclusion & Future Work
In this work, we developed the regularized ENNs that learn
an ENN based on the regularization associated with two
different uncertainty dimensions, vacuity and dissonance.
Via extensive experiments based on both synthetic and real
datasets, we demonstrated more reasonable levels of esti-
mated vacuity and dissonance in classification prediction
and out-of-distribution detection. From our study, the fol-
lowing key findings are obtained:

• Overall our proposed ENN considering both vacuity and
dissonance (i.e., ENN-Vac-Diss) outperformed among all
in terms of the performance in the out-of-distribution
task. In addition, our proposed ENN with vacuity consid-
ered (ENN-Vac) outperformed among all baselines as the
vacuity is regularized in an ENN.

• Our proposed ENN-Vac and ENN using dissonance
(ENN-Diss) showed more desirable uncertainty measure-
ment for vacuity and dissonance, respectively. To be spe-
cific, ENN-Vac showed high vacuity in more outliers (out-
of-distribution) samples. In addition, when ENN-Diss is
used, higher dissonance is observed particularly at the
boundary areas between different classes. This provides
great promise for this regularized ENNs considering dif-
ferent uncertainty dimensions to be applicable in vari-

ous types of classification prediction and OOD detection
tasks.

In our future work, we plan to: (1) investigate the clear
reasons of unstable performance of ENN considering mul-
tiple dimensions of uncertainty; (2) investigate how OOD
samples can be generated to more effectively estimate vacu-
ity; (3) validate the performance of our regularized ENNs
approach based on more real-world datasets (e.g., object de-
tection datasets); and (4) extend our proposed work with
more uncertainty regularized that can deal with vagueness
in hyper opinions in Subjective Logic.
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